
Úvod do programování v jazyce Python

Jan Pytel

České vysoké učení technické

11. května 2024

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 1 / 230

Struktura přednášek I

1 Úvod do programování

2 Základní datové typy, reprezentace čísel v počítačí

3 Odvozené datové typy

4 Podmíněný příkaz, cykly

5 Funkce

6 Základní kreslení obrázků s Turtle

7 Rekurze

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 2 / 230

Struktura přednášek II

8 List comprehenions

9 Simulace

10 Funkce print() a formátování výstupu

11 Moduly v Pythonu

12 Jména a hodnoty

13 Objektově orientované programování

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 3 / 230

Pravidla předmětu

Programování je zábava, přestože první kroky bývají obtížné.
Ambice je vás uvést do skvělého světa programování.

Kontakt jan.pytel@gmail.com
Cvičení jsou nepovinná
Striktní rozdělení přednášek a cvičení (změna oproti Úvod do SQL)
Zápočet obdrží každý automaticky
Během cvičení bude 5 úkolů - prvních úspěšných 5 řešitelů obdrží 10
bodů, zbylých 10 obdrží 5 bodů.
V případě dosažených bodů během semestru:

46 - garantovaná známka B
36 - 45 - garantovaná známka C
26 - 35 - garantovaná známka D
20 - 25 - garantovaná známka E

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 4 / 230

jan.pytel@gmail.com

Přednáška 1

Úvod do programování - problém, algoritmus, základní
vlastnosti algoritmu

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 5 / 230

"A computer program does what you tell it to do, not what you
want it to do."- Unknown

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 6 / 230

Co je to programování

Programování je proces vytváření instrukcí, které počítač provede k
řešení určitého problému.

V programování se problémem rozumí úkol nebo výzva, kterou je třeba
řešit pomocí počítačového programu.
Porozumění problému je prvním krokem v procesu vývoje softwaru.
Dáme si za úkol prozkoumat koncept problémů v programování a jak
jsou řešeny.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 7 / 230

Problém

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 8 / 230

Problém - identifikace

Prvním krokem při řešení problému je jeho jasná definice a porozumění.
To zahrnuje rozložení problému na menší části a identifikaci
požadavků.
Správná identifikace problému je klíčová pro vytvoření efektivního
řešení.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 9 / 230

Problém - analýza

Jakmile je problém identifikován, je důležité analyzovat jeho složitost a
omezení.
Porozumění vstupů, výstupů a omezení problému je zásadní pro návrh
vhodného algoritmu.
Analýza problému pomáhá určit nejefektivnější a nejúčinnější přístup k
jeho řešení.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 10 / 230

Problém - řešení

Řešení programového problému zahrnuje návrh algoritmu nebo sady
instrukcí k dosažení požadovaného výsledku.
Tento algoritmus by měl být logický, efektivní a schopný zpracovat
různé scénáře.
Testování a doladění řešení je iterativní proces, který zajišťuje jeho
správnost a účinnost.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 11 / 230

Algoritmy

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 12 / 230

Algoritmy

Algoritmus: Algoritmus je krok za krokem postupující postup pro
řešení určitého problému.
Vlastnosti algoritmů:

Efektivnost: Schopnost algoritmu provádět úkol rychle a s minimálním
využitím prostředků.
Konečnost: Algoritmus by měl skončit po konečném počtu kroků.
Konečný vstup a výstup: Algoritmus má definovaný vstup a výstup.
Jednoznačnost: Každý krok algoritmu musí být jasně definován a
nemůže být víceznačný.
Obecnost: Algoritmus by měl být schopen řešit obecný problém, ne jen
konkrétní instanci.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 13 / 230

Vlastnosti Algoritmů (Pokračování)

Determinovanost: Každý krok algoritmu musí být definován
jednoznačně a předvídatelně.
Optimalita: Algoritmus by měl řešit problém s minimálním možným
počtem kroků.
Rekursivita: Některé algoritmy mohou být definovány pomocí sebe
sama.
Důslednost: Algoritmus by měl dávat stejný výsledek pro stejný vstup.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 14 / 230

Příklad algoritmu - výpočet lichých čísel

Název Algoritmu: LichaCislaVypocet
Vstup: Žádný
Výstup: Seznam lichých čísel od 1 do 1000

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 15 / 230

Výpočet lichých čísel - algoritmus v Pseudokódu

for i Ð 1 do 1000 do
if i je liché then

Přidej i do seznamu lichých čísel
end if

end for

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 16 / 230

Výpočet lichých čísel - popis algoritmu

Začněte s číslem 1.
Pro každé číslo od 1 do 1000 zkontrolujte, zda je liché.
Pokud je číslo liché, přidejte ho do seznamu lichých čísel.
Opakujte tento proces pro všechna čísla od 1 do 1000.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 17 / 230

Výpočet lichých čísel - C` a Python

C``

1 #include <iostream >
2

3 int main() {
4 for (int i = 1; i <= 1000; i++) {
5 if (i % 2 == 1) {
6 std::cout << i << std::endl;
7 } // if
8 } // for
9 }

Python
1 for i in range(1, 1000):
2 if i % 2 == 1:
3 print(i)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 18 / 230

Výpočet lichých čísel do pole - C``

1 #include <iostream >
2 #include <vector >
3

4 std::vector <int > generuj_licha_cisla () {
5 std::vector <int > vec;
6 for (int i = 1; i <= 1000; i++) {
7 if (i % 2 == 1) {
8 vec.push_back(i);
9 } // if

10 } // for
11

12 return vec;
13 } // generuj_licha_cisla_do_pole
14

15 int main() {
16 for (int liche_cislo : generuj_licha_cisla ()) {
17 std::cout << liche_cislo << ", ";
18 } // for
19 std::cout << std::endl;
20 }

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 19 / 230

Výpočet lichých čísel do pole - Python

1 def generuj_licha_cisla ():
2 licha_cisla = []
3 for i in range(1, 1000):
4 if i % 2 != 0:
5 licha_cisla.append(i)
6 return licha_cisla
7

8 print(generuj_licha_cisla ())

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 20 / 230

Příklad algoritmu - seznam prvočísel od 1 do 1000

Název Algoritmu: PrvocislaCalculator
Vstup: Žádný
Výstup: Seznam prvočísel od 1 do 1000

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 21 / 230

Výpočet prvočísel od 1 do 1000 - algoritmus v Pseudokódu

for i Ð 2 to 1000 do
isPrime Ð true
for j Ð 2 to

?
i do

if i mod j “ 0 then
isPrime Ð false
break

end if
end for
if isPrime then

Přidej i do listu prvočísel
end if

end for

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 22 / 230

Výpočet Prvočísel

Začněte s číslem 2.
Projděte všechna čísla od 2 do 1000.
Pro každé číslo zkontrolujte, zda je prvočíslo.
Prvočísla jsou čísla dělitelná pouze jedničkou a samy sebou.
Přidejte prvočísla do seznamu prvočísel.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 23 / 230

Výpočet prvočísel od 1 do 1000 - Python

1 import math
2

3 # Python program ktery generuje list prvocisel od 1 do 1000
4 # Funkce vraci pro zadane cislo zdali se jedna o prvocislo
5 def je_prvocislo(num):
6 if num < 2:
7 return False
8 for i in range(2, int(math.sqrt(num))):
9 if num % i == 0:

10 return False
11 return True
12

13

14 for cislo in range(1, 1001):
15 if (je_prvocislo(cislo)):
16 print(cislo)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 24 / 230

Historie programovacích jazyků

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 25 / 230

Začátky programování

1936: Konceptuální základy programování byly položeny Alanem
Turingem s jeho myšlenkovým modelem - Turingovým strojem.
40tá léta: První elektronické počítače, jako např. ENIAC a UNIVAC,
vyvinuty v USA.
50tá léta: Byl představen jazyk symbolických instrukcí (Assembly
language), který umožňoval programátorům psát kód pomocí
mnemotechnických instrukcí.
50tá léta: Vznik prvních programovacích jazyků, včetně Fortranu,
COBOLu a LISPu. Tyto jazyky programování lidem zpřístupnily.
60tá léta: Vznik jazyka BASIC, který byl zaměřen na vzdělávání a
začátečníky.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 26 / 230

Rozvoj programování

70tá léta: Vznik jazyka C, který se stal základem pro mnoho dalších
jazyků.
80tá léta: Vznik jazyka C++, který přinesl objektově orientované
programování do popředí.
90tá léta: Rozvoj moderních jazyků, jako např. Python, JavaScript,
Ruby, které pokračují v inovaci a diversifikaci programovacích jazyků.
2000-: Python se stal univerzálním a snadno naučitelným jazykem,
široce používaným v různých oborech.
Rovněž rozmach open-source a komunitního přístupu k vývoji a sdílení
kódu.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 27 / 230

Python

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 28 / 230

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 29 / 230

Guido Van Rossum holandský pro-
gramátor, tvůrce programovacího ja-
zyka Python. Narodil se 31. ledna 1956
v Haagu, Nizozemsko. Van Rossum
vytvořil Python v roce 1989 a od té
doby se stal jedním z nejpoužívaněj-
ších a oblíbených programovacích ja-
zyků po celém světě. Guido van Ros-
sum je známý svým přístupem k pro-
gramování, který zdůrazňuje čitelnost
a jednoduchost kódu.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 30 / 230

Co je Python?

Python je vysokoúrovňový programovací jazyk
První vydání jazyka 1991 (Guido van Rossum)
Jednoduchá a elegantní syntaxe, snadné čtení a psaní kódu.
Mnoho knihoven a frameworků — jeden z nejoblíbenějších
programovacích jazyků.
Python je interpretovaný jazyk, což znamená, že kód je spouštěn
přímo interpretrem, což usnadňuje rychlý vývoj a testování programů.
http://www.python.org

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 31 / 230

http://www.python.org

Kde se Python používá

Jednoduchá odpověď: všude kde není potřeba low-level systém
programování, real-time aplikace, ...

Vývoj webových aplikací
Data Science a Machine Learning
Vědecké výpočty
Automatizace a skriptování
Vývoj her
Desktopové aplikace
Síťové technologie a kybernetická bezpečnost
Finance a obchodování
Internet věcí (IoT)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 32 / 230

Proč Python (a ne C++)?

Python je vhodný pro začátečníky - jednoduchá a čitelná syntaxe.
Křivka učení
Všestrannost
Rozsáhlé knihovny
Široká komunita

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 33 / 230

První aplikace v jazyce Python

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 34 / 230

Co je nutné pro spouštění první aplikace

Před tvorbou první aplikace je nezbytné mít k dispozici alespoň jednu z
následujících možností:

Práce v terminálu - stažení jazyka Python z
https://www.python.org/downloads/, pracujeme s versí ě 3.0.0
Replit - http://www.replit.com
Visual Studio Code - https://code.visualstudio.com/
PyCharm - https://www.jetbrains.com/pycharm/
Jupyterm - https://pypi.org/project/jupyterm/
a mnoho dalších ...

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 35 / 230

https://www.python.org/downloads/
http://www.replit.com
https://code.visualstudio.com/
https://www.jetbrains.com/pycharm/
https://pypi.org/project/jupyterm/

Práce v terminálu - interpret python3

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 36 / 230

Visual Studio Code

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 37 / 230

Replit

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 38 / 230

Jak Python interně pracuje

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 39 / 230

Jak Python interně pracuje

Převzato z https://www.pycodemates.com/2022/01/how-python-works-is-
it-really-an-interpreted-language.html

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 40 / 230

https://www.pycodemates.com/2022/01/how-python-works-is-it-really-an-interpreted-language.html
https://www.pycodemates.com/2022/01/how-python-works-is-it-really-an-interpreted-language.html

Kompilátor

Python kompilátor je komponenta interpretu Pythonu, která překládá
zdrojový kód Pythonu do bytecode. Tento bytecode je pak interpretován
Python Virtual Machine (PVM) k provedení operací specifikovaných v kódu
Pythonu. Kompilátor Pythonu je zodpovědný za generování bytecode z
lidsky čitelného zdrojového kódu Pythonu.

Překládá celý zdrojový kód do strojového kódu před spuštěním.
Detekuje chyby v kódu během fáze kompilace.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 41 / 230

Interpret

Python interpreter je program, který čte a vykonává kód napsaný v jazyce
Python. Překládá Python kód do strojově čitelného bytecode, který je poté
spuštěn pomocí Python Virtual Machine (PVM). Interpret Pythonu
kontroluje syntaxi kódu, interpretuje ho řádek po řádku a provádí instrukce
specifikované v kódu. Python interpret umožňuje uživatelům interaktivně
spouštět Python kód, což z něj činí klíčovou součást při provádění Python
programů.

Překládá zdrojový kód řádek po řádku za běhu a kontroluje syntaxi.
Vykonává kód přímo bez generování mezilehlého spustitelného
souboru.
Detekuje chyby za běhu při interpretaci každého řádku.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 42 / 230

Python - převod zdrojového kódu na spustitelný kód

1. Zdrojový kód je vytvořen v editoru a následně uložen (.py soubor).
2. Kompilace zdrojového souboru Python kompiluje zdrojový kód do byte

code, kompilátor též kontroluje syntaxi a vytváří .pyc soubor.
3. Byte code Kód v byte code (.pyc) je předán do Python Virtual

Machine1(PVM) což je Python interpreter. PVM konvertuje
byte code do machine-executable code (binární jazyk složený
z 0 a 1 kterému rozumí CPU systému)a čte a vykonává
soubor řádku po řádce.

4. Spuštění programu CPU spustí machine code.

1Virtuální stroj byl v Pythonu použit z důvodů přenositelnosti
Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 43 / 230

Různé implementace Pythonu

Python je jazyk s určitými pravidly syntaxe a sémantiky, ale implementace
Pythonu může být provedena různě. Výchozí a nejčastěji používaná
implementace Pythonu je CPython.

CPython: Standardní a nejpoužívanější implementace Pythonu
napsaná v jazyce C.
Jython: Implementace Pythonu, která běží na platformě Java Virtual
Machine (JVM). Umí kombinovat Python s existujícím Java kódem.
IronPython: Implementace Pythonu pro platformu .NET Framework.
Umožňuje integraci Pythonu s .NET knihovnami a kódem.
PyPy: Implementace Pythonu s důrazem na rychlost. Používá JIT
(Just-In-Time) kompilaci k optimalizaci výkonu.
MicroPython: Odlehčená implementace Pythonu optimalizovaná pro
vestavěné systémy a mikrokontroléry.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 44 / 230

První aplikace v jazyce Python

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 45 / 230

První aplikace v jazyce Python

1 # Vytvarime prvni aplikaci v jazyce Python
2

3 5
4 3.4
5 cislo1 = 10
6 cislo2 = 12
7 cislo4 = cislo1 * cislo2;
8 cislo4 % 3
9 print(cislo1 + cislo2) # vytiskne soucet cislo1 a cislo2

10

11

12 cislo3 = (25 + 35)**2
13 print(cislo3)
14 print (24 / 7)
15 print (24 // 5)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 46 / 230

Přednáška 2

Základní datové typy, reprezentace čísel v počítači

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 47 / 230

Co je datový typ v jazyce Python?

Datový typ v jazyce Python definuje typ dat, která může proměnná2

obsahovat.
Určuje operace, které lze provádět s daty.
Python je dynamicky typovaný jazyk, což znamená, že není nutné
explicitně deklarovat datový typ.
Python automaticky přiřazuje datový typ na základě hodnoty přiřazené
proměnné.

2Uvědomuji si, že pojem proměnnou budeme probírat později.
Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 48 / 230

Vestavěné datové typy v jazyce Python

int - celá čísla bez desetinné čárky
float - desetinná čísla s plovoucí desetinnou čárkou nebo ve tvaru

s exponentem
complex - komplexní čísla s reálnou a imaginární částí

str - řetězce - posloupnosti znaků uzavřené v uvozovkách
list - seznamy položek, které lze upravovat a jsou uspořádané

tuple - n-tice - spořádané kolekce položek, které nelze měnit
dict - slovníky - páry klíč-hodnota, které umožňují rychlé

vyhledávání
set - množiny - neuspořádané kolekce jedinečných prvků

bool - booleovská hodnota reprezentuje pravdivostní hodnoty,
buď True nebo False

NoneType - žádná hodnota reprezentuje absenci hodnoty nebo null

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 49 / 230

Vestavěné číselné datové typy v jazyce Python

Python má několik vestavěných číselných datových typů pro
reprezentaci různých druhů číselných hodnot3:

int - celá čísla bez desetinné čárky.
float - desetinná čísla s plovoucí desetinnou čárkou nebo ve

tvaru s exponentem.
complex - komplexní čísla s reálnou a imaginární částí.

3Datový typ bool je podmnožinou datového typu int, bude probírán dále
Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 50 / 230

Počítače a binární čísla

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 51 / 230

Počítače a binární čísla

Počítače používají binární čísla, která jsou složena z nul a jedniček, k
reprezentaci dat a provádění výpočtů - tzn. veškerá digitální data jsou
nakonec reprezentována v binární formě
Binární čísla jsou čísla se základem 2, používající pouze 0 a 1 jako
číslice.
Každá číslice v binárním čísle se nazývá bit (binární číslice).
Binární čísla se používají v počítačových systémech pro ukládání
paměti, aritmetické operace a logické operace.

Ukázka reprezentace čísla 47 binárním číslem (předpoklad, že používáme
pro číslo 4 byty):

p00000000 00000000 00000000 00101111q2 “ p47q10

1 ˆ 20 ` 1 ˆ 20 ` 1 ˆ 20 ` 1 ˆ 20 ` 1 ˆ 20 ` 1 ˆ 20 “ 47

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 52 / 230

Reprezentace záporných celých čísel v počítačích

V počítačích se záporná celá čísla reprezentují pomocí systému
nazvaného doplňkový kód (Two’s Complement).
Doplňkový kód umožňuje jednoduchou reprezentaci a manipulaci s
kladnými a zápornými čísly ve stejném systému.
V Doplňkovém kódu se nejlevější bit používá jako znaménkový bit4.
Pokud je tento bit 0, číslo je kladné; pokud je 1, číslo je záporné.
Příklad pro 8 bitové číslo (-70) a 16 bitové číslo (-24761):

´128 64 32 16 8 4 2 1
1 0 1 1 1 0 1 0

´32768 16384 8192 4096 2048 1024 512 256
1 0 0 1 0 0 1 0

128 64 32 16 8 4 2 1
1 0 0 1 0 0 1 0

4Existuje i jiný způsob.
Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 53 / 230

Velikost a rozsah

Pro reprezentaci magnitudy záporného čísla se inverzí všech bitů
kladné hodnoty a přidá se 1 k výsledku.
Příklad: Pro reprezentaci čísla -5 se invertními bity hodnoty 5
(00000101) a přičtením 1 získáme Two’s Complement reprezentaci -5
jako 11111011.
V 8-bitovém systému je rozsah reprezentovatelných hodnot pomocí
Doplňkového kódu od -128 do 127. Nejlevější bit (znaménkový bit)
určuje, zda je číslo kladné nebo záporné.

Počet bitů Vzorec Rozsah
8 ´28´1 to 28´1 ´ 1 ´128 do 127
16 ´216´1 to 216´1 ´ 1 ´32, 768 do 32, 767
24 ´224´1 to 224´1 ´ 1 ´8, 388, 608 do 8, 388, 607
32 ´232´1 to 232´1 ´ 1 ´2, 147, 483, 648 do 2, 147, 483, 647

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 54 / 230

Převod binárního na desítkový systém

Převod binárních čísel na desítkový systém zahrnuje násobení každého
bitu 2 umocněného na jeho pozici.
Sčítáním výsledků získáte desetinný ekvivalent binárního čísla.
Například binární číslo 11010 je ekvivalentní desetinnému číslu 26.
Ukázka reprezentace čísla 47 a 235061 binárním číslem (předpoklad,
že používáme pro číslo 4 byty):

p00000000 00000000 00000000 00101111q2 “ p47q10

1 ˆ 20 ` 1 ˆ 20 ` 1 ˆ 20 ` 1 ˆ 20 ` 1 ˆ 20 ` 1 ˆ 20 “ 47

p00000000 00000011 10010110 00110101q2 “ p235061q10

217 ` 216 ` 215 ` 212 ` 210 ` 29 ` 25 ` 24 ` 22 ` 20 “ 235061

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 55 / 230

Převod z desítkového na binární systém

1 Inicializujme prázdný seznam pro ukládání binárních číslic.
2 Pro dané desítkové číslo číslo spustíme smyčku, dokud číslo je

větší než 0.
3 Uvnitř smyčky vypočítáme zbytek po dělení číslo číslem 2 (toto je

nejméně významná číslice).
4 Přidáme vypočítaný zbytek na začátek seznamu binárních číslic.
5 Číslo číslo celočíselně vydělíme číslem 2 a aktualizujeme číslo s

celočíselným výsledkem dělení.
6 Opakujeme kroky 3-5, dokud číslo není 0.
7 Binární reprezentace desítkového čísla je spojení binárních číslic ze

seznamu.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 56 / 230

Převod z desítkového na binární systém - příklad a kroky
algoritmu

Převod desítkového čísla 177 na binární.
Tento symbol značí celočíselné dělení c

177 c 2 = 88 1
88 c 2 = 44 0
44 c 2 = 22 0
22 c 2 = 11 0
11 c 2 = 5 1
5 c 2 = 2 1
2 c 2 = 1 0
1 c 2 = 0 1

Výsledné binární číslo je 10110001

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 57 / 230

Binární aritmetika

Binární aritmetika zahrnuje sčítání, odčítání, násobení a dělení
binárních čísel.
Binární Sčítání je podobné desítkovému sčítání, s rozdílem, že přenos
nastává při dosažení hodnoty 2 místo 10. Sčítání v binární soustavě
funguje podle následující tabulky:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10 (přenos 1)

Binární odčítání je podobné desítkovému odčítání, s použitím půjčky,
když je potřeba. Odčítání v binární soustavě funguje podle následující
tabulky:

0 - 0 = 0
1 - 0 = 1
1 - 1 = 1
0 - 1 = 10 (půjčka 1)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 58 / 230

Reprezentace reálných čísel v počítači - aritmetika v
plovoucí řádové čárce

Úloha 1: Pomocí počítače vynásobme dvě reálná čísla 1
10 ˆ 2

5 a
porovnejme výsledek s hodnotou 2

50 . Tato úloha vypadá na první pohled
naprosto nesmyslně (výsledek známe), přesto se ji pokusme nyní věnovat.

Úloha 2: Pomocí počítače vyřešme následující soustavu rovnic (2 ˆ 3):

p1014 ` 7qx ` p1014 ` 1qy “ 2p1014 ` 4q (1)
p1014 ` 1qx ` p1014 ` 1qy “ 2p1014 ` 1q

respektive (přepsáno méně čitelnou formou):

100000000000007x ` 100000000000001y “ 200000000000008
100000000000001x ` 100000000000001y “ 200000000000002

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 59 / 230

Řešení úlohy 2

Řešení této soustavyje triviální: Od horního řádku odečteme řádek spodní a
ihned získáme hodnotu x

6x ` 0y “ 6⇝ x “ 1

dosazením vypočteného x do řádku dvě vypočteme hodnotu neznámé y

100000000000001 ` 100000000000001y “ 200000000000002⇝ y “ 1

Nechme soustavu rovnic (1) vyřešit počítačem, resp. programem který
dokáže řešit soustavy rovnic GNU Octave.

octave:1> K = 10^14; K = 100000000000000
octave:2> A = [K + 7, K + 1;
> K + 1, K + 1]
A =

100000000000007 100000000000001
100000000000001 100000000000001

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 60 / 230

Řešení úlohy 2 ...

octave:3> L = [2*K + 8;
> 2*K + 2]
L =

200000000000008
200000000000002

octave:4> A \ L
ans =

1.001599629720052
0.998400370279948

Výsledek je však chybný! Výsledek je zapříčiněn vlastnostmi čísel
zobrazených v pohyblivé řádové čárce, resp. realizací reálných čísel na
počítači.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 61 / 230

Realizace a zobrazení čísel v pohyblivé řádové čárce

Počítače jsou diskrétní, konečné stroje a proto reálná čísla v počítačích
nemohou být uložena s nekonečnou přesností — reálná čísla v
počítačích neexistují.
Reálná čísla v počítači jsou interně zobrazena (realizována) pomocí tří
částí:

mantisa obsahuje číslo v tzv. normalizovaném tvaru
exponent určuje, o kolik řádů je nutno posunout řádovou čárku.
znaménkový bit určuje znaménko

Počet bitů mantisy a exponentu je implementačně závislý a liší se dle
typu počítače a zvoleného reálného datového formátu.
Standard IEEE 954 definuje čtyři (zde mi chybí single extended)
formáty zobrazení čísel v pohyblivé řádové čárce:

Formát Délka mantisy Celková délka formátu
single 24 32
double 53 64

double extended ě 64 ě 79

Tabulka: Velikosti datových formátù (počet bitů)Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 62 / 230

Realizace a zobrazení čísel v pohyblivé řádové čárce

Počet bitù určených pro reprezentaci reálného čísla uloženého v paměti
počítače je vždy omezen
Není možno korektně zobrazit všechna čísla na číselné ose
Čím větší je počet bitù v kterých je číslo uloženo, tím je formát
‘přesnější’ a má větší “rozsah”
Počet všech čísel, které je možno pomocí daného formátu zobrazit je
hodnota, kterou dává k dispozici kódování do n bitů — tedy počet
reálných čísel zakódovaných v n bitech může maximálně být 2n.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 63 / 230

Konkrétní reprezentace reálných čísel

Reálná čísla v počítači jsou interně zobrazena (realizována) pomocí tří
částí, znaménkového bitu, mantisy a exponentu.
Označme znaménkový bit s, mantisu m a exponent e. Poté číslo
realizováno pomocí s, m a e má tvar

´1s ˆ M ˆ Be´E ,

kde B je báze soustavy reprezentace (téměř vždy 2) a E je “bias” –
celočíselná konstanta daná typem implementace.
Pokud počet bitů mantisy označíme rm, mantisa má následující tvar

d0d1 . . . drm´1

a reprezentuje reálné èíslo

´1s ˆ
`

1 ` d0B
´1 ` d1B

´2 ` ¨ ¨ ¨ ` drm´1B
´rm

˘

ˆBe , p0 ď di ă Bq. (2)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 64 / 230

Konkrétní reprezentace reálných čísel - přesnost a rozsah

Rozsah mantisy určuje relativní přesnost zobrazení čísla, rozsah čísel lze
zjistit z velikosti exponentu:

Přesnost Dvě sousední čísla se liší v hodnotě nejnižšího bitu mantisy
(zatím nechme stranou velikost e a skutečnost, že se sousední
čísla liší o hodnotu nejnižšího bitu mantisy ˆBe´E). Pokud je
rozsah mantisy např. 22, liší se dvě bezprostředně po sobě
následující čísla o hodnotu 2´22, tedy o 2.4 ˆ 10´7. Čísla
tedy lze používat s přesností na 7 platných číslic.

Rozsah Pokud rozsah (počet bitù) exponentu označíme re získáme v
exponentu rozmezí r´E , 2re ´ E s. Například pro re “ 8 je
posun desetinné tečky v rozsahu

“

2´127, 2128
‰

a čísla se
pohybují v intervalu 2´127 a¾ 2128, přibližně tedy v intervalu
10´38 až 10`38.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 65 / 230

Konkrétní reprezentace reálných čísel - přesnost a rozsah

Jedním z důsledků rovnice (2) je existence nekonečného počtu reálných
čísel majících v desítkové soustavě konečné vyjádření oproti nekonečnému
vyjádření v soustavě dvojkové. Například číslo 1

10 je ve dvojkové soustavì
vyjádřitelné pouze nekonečným binárním rozvojem.

Ukázky čísel které jsou v desítkové soustavě vyjádřené konečným
číslem, ve dvojkové soustavě nekonečným binárním rozvojem:

desítková soustava dvojková soustava
0.1 0.0001100110011 . . .
0.2 0.001100110011 . . .
0.3 0.01001100110011 . . .
0.4 0.011001100110011 . . .
0.6 0.1001100110011 . . .

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 66 / 230

Konkrétní reprezentace reálných čísel - přesnost a rozsah

Příklad: Převeďme číslo 34.323 do normalizovaného tvaru pohyblivé
řádové čárky. Rozsah mantisy + znaménkový bit je rm “ 24 bitù, rozsah
exponentu je re “ 8 a bias E “ 127.

Nejprve převedeme celou část čísla 34.323: p34q10 “ p100010q2. Pro
kontrolu

1 ˆ 25 ` 0 ˆ 24 ` 0 ˆ 23 ` 0 ˆ 22 ` 1 ˆ 21 ` 0 ˆ 20 “ 32 ` 2 “ 34

Desetinnou část dělíme postupně číslem 2 a sledujeme, zdali je výsledek
větší než jedna, pokud ano zapíšeme binární jedničku a pro další násobení
jedničku odečteme, v opačném případě zapíšeme binární 0. Tento cyklus
opakujeme tak dlouho, dokud výsledek není nulový. Desetinná část, číslo
0.323, nemá konečné binární vyjádření

p0.323q10 “ p0.01010010101100000010000011 . . . q2

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 67 / 230

Konkrétní reprezentace reálných čísel - přesnost a rozsah

kontrola

0 ˆ 2´1 ` 1 ˆ 2´2 ` 0 ˆ 2´3 ` 1 ˆ 2´4 ` . . . 1 ˆ 2´26 “ 0.322999998927116

Binární reprezentace čísla 34.323

p34.323q10 « p100010.0101001010110000001000001100010010011011101q2

Jelikož číslo je kladné, znaménkový bit je roven 0. Při výpočtu čísla dle
rovnice se (2) musíme posunout desetinnou tečku tak, abychom dostali tvar
1.m ˆ 2posun a tedy posunout desetinnou tečku v kladném směru o pět
pozic.
Číslo 34.323 je reprezentováno naším formátem následovně (znak |
naznačuje začátek mantisy a exponentu):

0|00010010100101011000000|10000100

Číslo 34.323 nelze ve dvojkové soustavì zobrazit přesně:

p34.323q10 « p100010.0101001010110000q2 “ p34.322998q10

lJan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 68 / 230

Reprezentace čísel ve formátu single

Formát single se skládá ze tří polí: 23-bitové mantisy m, 8bitového
exponentu e a znaménkového bitu s. Tato pole jsou souvisle uložena v
32 bitech:

s e[30:23] m[22:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ostatní IEEE formáty (double, extended single a extended double)
mají velmi podobnou representaci — hlavní rozdíl je v počtech bitù
vyčleněných pro mantisu a exponent a ve velikosti biasu.

IEEE single Bitù Min. kladné Max. kladné Poèet platných
formát mantisy èíslo èíslo cifer
single 24 1.175 ˆ 10´38 3.402 ˆ 10`38 6–9
double 53 2.225 ˆ 10´308 1.797 ˆ 10`308 15–17
double 64 3.362 ˆ 10´4932 1.189 ˆ 10`4932 18–21
extended

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 69 / 230

Proměnné v jazyce Python

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 70 / 230

Proměnné v jazyce Python

Proměnná je označení pro místo v paměti, kde je uložena hodnota.
Jazyk Python nemá žádný příkaz pro deklaraci proměnných,
proměnnou vytvoříte v okamžiku kdy ji poprvé přiřadíte hodnotu
Proměnné může být přiřazena hodnota daného typu a později může
být přiřazena hodnota jiného typu
Název proměnné by měl být výstižný a popisný, aby bylo jasné, co
proměnná reprezentuje - požadavky na jmennou konvenci:

Jméno proměnné by měla začínat malým písmenem nebo podtržítkem
_
Jméno proměnné nesmí začínat číslem
Jméno proměnné může obsahovat pouze alpha-numeric znaky a
podtržítko (A-z, 0-9, a _)
Jména proměnných jsou citlivá na velké a malé písmena
Jméno proměnné nemůže být žádné rezervované slovo jazyka Python

Přiřazení hodnoty proměnné se provádí pomocí operátoru “

Python je dynamicky typovaný jazyk, což znamená, že typ proměnné
se určuje automaticky podle hodnoty, která je do proměnné přiřazena

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 71 / 230

Proměnné v jazyce Pythonu

1 >>> cislo = 10
2 >>> cislo
3 10
4 >>> cislo1
5 Traceback (most recent call last):
6 File "<stdin >", line 1, in <module >
7 NameError: name ’cislo1 ’ is not defined. Did you mean: ’

cislo’?
8 >>>
9 >>> soucetLet = 1934

10 >>> dvojnasobekSouctuLet = 2* soucetLet
11 >>>
12 >>> dvojnasobekSouctuLet
13 3868
14 >>>
15 >>> cislo = "Dnes je krasne"
16 >>>
17 >>> cislo
18 ’Dnes je krasne ’
19 >>>

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 72 / 230

Příkazy type and print

Příkaz type slouží k zjištění typu objektu v Pythonu.
Syntaxe: type(object)
Příklad: x = 10, print(type(x))

Výstup: <class ’int’>‘

Příkaz print slouží k výpisu textu a hodnot na standardní výstup.
Syntaxe: print(value1, value2, ...)

Příklad: x = 10, print("Hodnota x je:", x)

Výstup: Hodnota x je: 10

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 73 / 230

Celá čísla

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 74 / 230

Celá čísla (int)

Celá čísla v Pythonu reprezentují celá čísla bez desetinných míst
Mohou být kladná, záporná nebo nula
Celá čísla v Pythonu mají neomezenou přesnost, což znamená, že
mohou být libovolně velká nebo malá (pozor na rychlost výpočtu u
velkých čísel)
Operace s celými čísly zahrnují sčítání, odčítání, násobení a dělení
Příklady: 1, 2, 3, 4, ...

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 75 / 230

Proměnné v jazyce Pythonu

1 >>> 5 + 30 # scitani
2 35
3 >>> 45 - 20 # rozdil
4 25
5 >>> 6 / 4 # deleni
6 1.5
7 >>> 10 / 5 # deleni
8 2.0
9 >>> 2 ** 4 # umocnovani

10 16
11 >>> (10 + 43) * 3
12 159
13 >>> _ + 10
14 169
15 >>> 20 % 7 # zbytek po deleni
16 6
17 >>> 10 // 4 # celociselne deleni
18 2
19 >>>

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 76 / 230

Operátory jazyka Python (dle priority — od největší k
nejmenší)

Operace Popis
pq závorky
˚˚ exponent
`x , ´x , „x unární `, unární ´, bitové NOT

˚, {, {{, % násobení, dělení, celočíselné dělení,
zbytek po dělení

`, ´ sčítání, odčítání
ăă, ąą bitové posuny
& bitové AND

bitové XOR
| bitové OR
““, ! “, ą, ą“, ă, ă“, is,
is not, in, not in porovnání, operátory členství

not logické NOT
and logické AND
or logické OR

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 77 / 230

Použití operátorů

1 >>> 5 + 10 * 20 ** 2
2 4005
3 >>> (5 + 10) * 20 ** 2
4 6000
5 >>> (5 + 10 * 20) ** 2
6 42025
7 >>> 10 + (20 // 7) * 5
8 20

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 78 / 230

Desetinná čísla

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 79 / 230

Desetinná čísla (float)

Desetinná čísla v Pythonu reprezentují čísla s desetinnými místy nebo
ve formě exponentu
Používají se k reprezentaci reálných čísel a mohou mít desetinnou část
Python používá standard IEEE 754 k reprezentaci desetinných čísel
Operace s desetinnými čísly mohou někdy vést k chybám přesnosti, viz
reprezentace reálných čísel v počítači

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 80 / 230

Desetinná čísla (float)

1 >>> cislo = 1.453345
2 >>> cislo * 34.4
3 49.995068
4 >>> cislo1 = 12.3e6
5 >>> cislo1
6 12300000.0
7 >>>

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 81 / 230

Module math

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 82 / 230

Konstanty a Funkce v Modulu Math

Modul math v Pythonu poskytuje matematické funkce a konstanty
Pro použití modulu je potřeba ho nejprve importovat: import math

Konstanta/Funkce Popis
math.pi Matematická konstanta π

math.e Matematická konstanta Eulerovo číslo e

math.sqrt(x) Odmocnina čísla x

math.sin(x) Sinus úhlu x v radiánech
math.cos(x) Kosinus úhlu x v radiánech
math.exp(x) Exponenciální funkce ex

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 83 / 230

Komplexní čísla

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 84 / 230

Komplexní čísla (complex)

Komplexní čísla v Pythonu mají reálnou a imaginární část
Jsou reprezentována jako a ` bj , kde a je reálná část a b je imaginární
část.
Python poskytuje vestavěné funkce pro práci s komplexními čísly, jako
jsou complex(), real a imag

Komplexní čísla se používají v různých matematických a vědeckých
výpočtech
Příklad: z = 2 + 3j

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 85 / 230

Komplexní čísla (complex)

1 >>> cislo = 5 + 6j
2 >>> cislo
3 (5+6j)
4 >>> cislo1 = 4 - 9j
5 >>> cislo1
6 (4-9j)
7 >>> cislo + cislo1
8 (9-3j)
9 >>> cislo ** 2

10 (-11+60j)
11 >>> cislo.real
12 5.0
13 >>> cislo.imag
14 6.0
15 >>> cislo2 = complex (1,2)
16 >>> cislo2
17 (1+2j)
18 >>> cislo.imag
19 6.0

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 86 / 230

Datový typ Bool

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 87 / 230

Datový typ Bool

Reprezentuje logické hodnoty - True (pravda) nebo False (nepravda)
True představuje logickou hodnotu pravda
False představuje logickou hodnotu nepravda
Používá se v podmínkách a logických operacích
Produkují logické výsledky (např. ““, ! “, ą, ă).
Používají se k kombinaci logických výrazů (např. and, or, not):

A B A and B A or B not A
True True True True False
True False False True False
False True False True True
False False False False True

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 88 / 230

Datový typ Bool v jazyce Python

1 >>> 1 == 1
2 True
3 >>> 1 != 1
4 False
5 >>> 1 != 1 or 2 == 2
6 True
7 >>> 1 != 1 or 2 == 2
8 True
9 >>> 2 < 90

10 True
11 >>> 234 < 40
12 False
13 >>> 234 < 40 and 4 > 103
14 False
15 >>> 234 < 40 or 4 > 103
16 False
17 >>>

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 89 / 230

Řetězce

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 90 / 230

Datový typ Řetězec (String) v Pythonu

Reprezentuje textové hodnoty v Pythonu
Řetězec je sekvence znaků uzavřená v jednoduchých ” nebo dvojitých
""uvozovkách.
Python poskytuje mnoho funkcí pro práci s řetězci, jako je spojování,
rozdělování, porovnávání atd.
Řetězce lze indexovat a řezat pro získání konkrétních částí
Je reprezentován jako pole znaků, každý znak v řetězci má svůj index
(počínaje od 0)
Délku řetězce vrací funkce len(řetězec)
Ukázky indexace:

Řetězec "Ahoj"má indexy: A(0), h(1), o(2), j(3)
Přístup k 8. znaku: "Ahoj, dnes je úterý"[8]

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 91 / 230

Řetězce - ukázka

1 >>> retezec1 = "Dnes je krasne"
2 >>> retezec2 = ’Ahoj’
3 >>> print(retezec1)
4 Dnes je krasne
5 >>> print(retezec2)
6 Ahoj
7 >>> type(retezec1)
8 <class ’str’>
9 >>> retezec3 = retezec1 + retezec2 # spojovani retezcu

10 >>> print(retezec3)
11 Dnes je krasneAhoj
12 >>> print(retezec3 [0]) # indexovani retezcu - prvni znak v

retezci
13 D
14 >>> print(retezec3 [1]) # indexovani retezcu - druhy znak v

retezci
15 n
16 >>> print(retezec3 [100]) # pristup k neexistujicimu znaku
17 Traceback (most recent call last):
18 File "<stdin >", line 1, in <module >
19 IndexError: string index out of range
Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 92 / 230

Nejpoužívanější funkce pro práci s řetězci v Pythonu

Název funkce Stručné vysvětlení
len() Vrací délku řetězce

str.lower() Převede všechny znaky v řetězci na malá pís-
mena

str.upper() Převede všechny znaky v řetězci na velká pís-
mena

str.strip() Odstraní všechny vedoucí (na začátku) a
koncové (na konci) mezery

str.split(oddělovač) Rozdělí řetězec na seznam podle zadaného
oddělovače

str.join(iterable) Spojuje prvky iterovatelného objektu (např.
seznam) do řetězce s určeným oddělovačem

str.replace(pod, str) Nahradí zadaný podřetězec jiným podřetěz-
cem v řetězci

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 93 / 230

Řetězce - nejpoužívanější funkce

1 >>> # Delka retezce
2 >>> retezec1 = "Jazyk Python je skvely"
3 >>> length = len(retezec1)
4 >>> print("Delka retezce:", length)
5 Delka retezce: 22
6 >>> # Rozdelovani retezcu
7 >>> text = "Hello , World!"
8 >>> substring = text [7:]
9 >>> print("Podretezec:", substring)

10 Podretezec: World!
11 >>> # Prevod na male a velke znaky
12 >>> sentence = "Programovani v Pythonu je zabava"
13 >>> uppercase_sentence = sentence.upper ()
14 >>> lowercase_sentence = sentence.lower ()
15 >>> word_list = sentence.split()
16 >>> print("Uppercase:", uppercase_sentence)
17 Uppercase: PROGRAMOVANI V PYTHONU JE ZABAVA
18 >>> print("Lowercase:", lowercase_sentence)
19 Lowercase: programovani v pythonu je zabava

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 94 / 230

Řetězce - nejpoužívanější funkce

1 >>> print("Word List:", word_list)
2 Word List: [’Programovani ’, ’v’, ’Pythonu ’, ’je’, ’zabava ’]
3 >>> # Nahrazovani textu
4 >>> quote = "Life is short , use Python!"
5 >>> new_quote = quote.replace("Python", "Java")
6 >>> print("New Quote:", new_quote)
7 New Quote: Life is short , use Java!
8 >>> # Hledani v textu
9 >>> email = "jan.novak@gmail.com"

10 >>> if "@" in email:
11 ... print("Spravna adresa")
12 ... else:
13 ... print("nespravna adresa")
14 ...
15 Spravna adresa

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 95 / 230

Escape characters

Speciální symboly uvozené lomítkem:

Speciální znak Význam
\n Nový řádek
\t Odstup
\’ Jednoduchá uvozovka
\" Dvojitá uvozovka
\\ Zpětné lomítko

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 96 / 230

Unicode v Pythonu

Unicode je standard pro reprezentaci znaků v různých jazycích a
písmech.
V Pythonu lze pracovat s Unicode znaky pomocí escape sekvencí.

Unicode Popis
U+0161 Malé písmeno š
U+0158 Velké písmeno Ř
U+0041 Velké písmeno A
U+00E1 Malé písmeno á
U+03B1 Řecké písmeno α

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 97 / 230

Přednáška 3

Odvozené datové typy

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 98 / 230

Seznamy v Pythonu

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 99 / 230

Seznamy v Pythonu

Seznamy jsou uspořádané, měnitelné a všestranné datové struktury,
které mohou uchovávat kolekci prvků.
Jsou vytvořeny umístěním prvků do hranatých závorek rs

Seznamy slouží k ukládání více prvků do jedné proměnné
Mohou obsahovat prvky různých datových typů
Seznamy jsou indexovatelné
Podporují různé operace, jako je přidávání, odebírání, řazení a další
Nabízejí širokou škálu funkcí pro manipulaci a přístup

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 100 / 230

Funkce seznamů

Funkce Syntaxe Popis
Append list.append(element) Přidá prvek element na konec se-

znamu.
Insert list.insert(index, element) Vloží prvek element na určenou

pozici index v seznamu.
Remove list.remove(element) Odebere první výskyt zadané hod-

noty element ze seznamu.
Pop popped_element =

list.pop(index)
Odebere a vrátí prvek na určeném
indexu index ze seznamu.

Sort list.sort() Seřadí seznam vzestupně.
Index index = list.index(element) Vrátí index prvního výskytu zadané

hodnoty element v seznamu.
Len length = len(list) Vrátí počet prvků v seznamu.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 101 / 230

Ukázky použití

1 # Priklad 1: Pridani
2 my_list = [1, 2, 3]
3 my_list.append (4)
4 # Priklad 2: Vlozeni
5 my_list.insert(2, 2.5)
6 # Example 3: Odebrani
7 my_list.remove (2)
8 # Example 4: Odebrani prvku
9 popped_element = my_list.pop(2)

10 # Example 5: Serazeni
11 my_list.sort()
12 # Example 6: Index
13 index = my_list.index (3)
14 # Example 7: Pocet prvku
15 length = len(my_list)
16 # Example 8: Count
17 count = my_list.count (2)
18 # Example 9: Rozsireni
19 new_list = [5, 6, 7]
20 my_list.extend(new_list)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 102 / 230

N-tice v Pythonu

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 103 / 230

N-tice v Pythonu

N-tice v Pythonu jsou nezměnitelné datové struktury, které mohou
uchovávat kolekci prvků různých typů. Jsou vytvořeny pomocí závorek
pq.
N-tice jsou podobné seznamům, ale nejsou měnitelné.
Mohou obsahovat prvky různých datových typů.
N-tice jsou indexovatelné a lze přistupovat k prvkům podobně jako u
seznamů.
N-tice mají omezené funkce ve srovnání se seznamy, protože jsou
nezměnitelné.
Nicméně, podporují základní operace jako indexování a slicing.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 104 / 230

Nejčastěji používané funkce nad N-ticemi

Function Syntax Description
Index index =

tuple.index(element)
Vrátí index prvního výskytu za-
dané hodnoty element v tuplu.

Count count =
tuple.count(element)

Vrátí počet výskytů zadané
hodnoty element v tuplu.

Length length = len(tuple) Vrátí počet prvků v tuplu.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 105 / 230

N-tice - ukázka

1 >>> # Vytvoreni N-tic
2 >>> n1 = (1, 2, ’jablko ’, ’banan ’)
3 >>> # Vypsani prvniho a posledniho elementu
4 >>> print("Prvni element:", n1[0])
5 Prvni element: 1
6 >>> print("Posledni element:", n1[-1])
7 Posledni element: banan
8 >>> # Delka N-tice
9 >>> print("Delka n-tice", len(n1))

10 Delka n-tice 4
11 >>> # Pocitani vyskytu
12 >>> count = n1.count("ahoj")
13 >>> print("Pocet vyskytu ahoj:", count)
14 Pocet vyskytu ahoj: 0
15 >>> # Index funkce
16 >>> index = n1.index(’banan’)
17 >>> print("Index ’banan ’:", index)
18 Index ’banan ’: 3
19 >>> #
20 >>> a, b, ovoce1 , ovoce2 = n1
21 >>> print("Hodnoty:", a, b, ovoce1 , ovoce2)
22 Hodnoty: 1 2 jablko banan
Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 106 / 230

Slovníky v Pythonu

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 107 / 230

Slovníky v Pythonu

Slovníky v Pythonu jsou neuspořádané kolekce datových struktur,
které uchovávají páry klíč-hodnota. Jsou vytvořeny pomocí složených
závorek tu.
Slovníky umožňují rychlý přístup k hodnotám pomocí klíčů.
Každý klíč v slovníku musí být unikátní.
Hodnoty v slovníku mohou být různých datových typů.
Slovníky v Pythonu jsou užitečné pro uchovávání dat v podobě
klíč-hodnota

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 108 / 230

Funkce slovníků

Funkce Syntax Příklad
Přístup k Hodnotě hodnota = slovník[klíč] věk = osoba[’věk’]

Přidání/Aktualizace Hodnoty slovník[klíč] = hodnota osoba[’město’] = ’New
York’

Odstranění Klíč-Hodnota Páru del slovník[klíč] del osoba[’město’]
Kontrola Existence Klíče if klíč in slovník: if ’město’ in osoba:

Seznam Klíčů klíče =
list(slovník.keys())

klíče =
list(osoba.keys())

Seznam Hodnot hodnoty =
list(slovník.values())

hodnoty =
list(osoba.values())

Seznam Položek položky =
list(slovník.items())

položky =
list(osoba.items())

Tabulka: Nejpoužívanější Funkce pro Slovníky v Pythonu

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 109 / 230

Slovníky - ukázka

1 >>> # Vytvoreni slovniku
2 >>> subject = {’jmeno ’: ’Uvod do jazyka Python ’, ’kreditu ’:

5, ’zakonceni ’: ’zkouska ’}
3 >>> # Ziskani jmeno predmetu Value
4 >>> jmeno = subject[’jmeno’]
5 >>> print("Jmeno predmetu:", jmeno)
6 Jmeno predmetu: Uvod do jazyka Python
7 >>> # Pridani/Modifikace hodnot
8 >>> subject[’kreditu ’] = 5
9 >>> print("Nove kredity:", subject[’kreditu ’])

10 Nove kredity: 5
11 >>> # Smazani polozky s danym klicem
12 >>> del subject[’zakonceni ’]
13 >>> print("Dictionary after removing ’city ’:", subject)
14 Dictionary after removing ’city’: {’jmeno’: ’Uvod do jazyka

Python ’, ’kreditu ’: 5}
15 >>> # Kontrola existence klice
16 >>> if ’kreditu ’ in subject:
17 ... print("Klic kreditu exituje ve slovniku existuje")

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 110 / 230

Slovníky - ukázka

1 >>> # List klicu
2 >>> klice = list(subject.keys())
3 >>> print("Klice:", klice)
4 Klice: [’jmeno ’, ’kreditu ’]
5 >>> # List hodnot
6 >>> hodnoty = list(subject.values ())
7 >>> print("Hodnoty:", hodnoty)
8 Hodnoty: [’Uvod do jazyka Python ’, 5]
9 >>> # Items list

10 >>> items = list(subject.items())
11 >>> print("Items:", items)
12 Items: [(’jmeno ’, ’Uvod do jazyka Python ’), (’kreditu ’, 5)]

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 111 / 230

Přednáška 4

Základní booleovské funkce, podmíněný příkaz

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 112 / 230

Podmínky

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 113 / 230

Podmínky If, Elif, Else v Pythonu

Python používá příkazy if, elif a else pro podmíněné provádění
kódu.
Příkaz elif umožňuje definovat další podmínky po if.
Syntaxe:
if podmínka1:

kód
elif podmínka2:

kód

Příklad:
x = 10
if x > 5:

print("x je větší než 5")

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 114 / 230

If - syntaxe

1 cislo = 10
2

3 if cislo > 0:
4 print("Cislo je kladne")
5 elif cislo < 0:
6 print("Cislo je zaporne")
7 else:
8 print("Cislo je nula")

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 115 / 230

Cyklus for

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 116 / 230

For cyklus v Pythonu

For cyklus v Pythonu slouží k iteraci přes sekvenci (např. list, tuple,
string) nebo rozsah čísel.
Funkce range() je běžně používána k vytvoření sekvence čísel.
Příkaz break slouží k předčasnému ukončení smyčky.
Příkaz continue slouží k přeskočení zbytku aktuální iterace a
pokračování na další.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 117 / 230

Python For Loop

Cyklus for v jazyce Python slouží k opakování určitého bloku kódu pro
každý prvek v sekvenci (jako je list, tuple, dictionary, string atd.).
item Syntaxe:

1 for prvek in sekvence:
2 blok kodu k opakovani

Proměnná prvek zastupuje aktuální prvek v sekvenci.
Sekvence může být jakýkoli iterovatelný objekt.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 118 / 230

Funkce range() v Pythonu

Funkce range() v Pythonu generuje sekvenci čísel.
Syntaxe: range(start, stop, step)
Parametry:

start: Počáteční hodnota (výchozí hodnota je 0).
stop: Koncová hodnota (nebude zahrnuta).
step: Krok (výchozí hodnota je 1).

Příklady:
range(5) generuje čísla od 0 do 4.
range(1, 6, 2) generuje lichá čísla od 1 do 5.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 119 / 230

Funkce range() v Pythonu — ukázky použití

1 >>> # funkce range nevraci list , pouze to tak "vypada"
2 >>> print(range (10))
3 range(0, 10)
4 >>>
5 >>> print (list(range (10)))
6 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
7 >>>
8 >>> print (list(range (0,20,2)))
9 [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

10 >>>
11 >>> print (list(range (100,0, -5)))
12 [100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 45, 40, 35,

30, 25, 20, 15, 10, 5]

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 120 / 230

For cyklus - různé průchody

Použití range() ve for cyklu

1 for i in range (5):
2 print(i)

Použití break ve for cyklu

1 for i in range(1, 6):
2 if i == 3:
3 break
4 print(i)

Použití continue ve for cyklu

1 for i in range(1, 6):
2 if i == 3:
3 continue
4 print(i)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 121 / 230

For - různé průchody

Iterace přes List

1 ovoce = [’jablko ’, ’banan’, ’tresen ’]
2 for ovoce in ovoce:
3 print(ovoce)

Iterace přes String

1 slovo = ’Python ’
2 for pismeno in slovo:
3 print(pismeno)

Iterace přes Slovník

1 studenti = {1234 : ’Jan Novak ’, 3456: ’Jana Nova’, 345:
’Petr ’}

2

3 # Vytvorime si kopii
4 for id, jmeno in studenti.items():
5 print(id , jmeno)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 122 / 230

Příklad s Else, Break, Continue Statementy

else vykoná se po skončení cyklu (není vykonán v případě volání
break)
break ukončí nejbližší cyklus for nebo while
continue přejde na další interakci v cyklu

1 # Priklad s else statementem
2 for i in range (5):
3 print(i)
4 else:
5 print("Cyklus uspesne dokoncen")
6

7 # Priklad s break a continue statementy
8 for j in range (10):
9 if j == 3:

10 continue
11 if j == 7:
12 break
13 print(j)
14

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 123 / 230

Cyklus while

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 124 / 230

Python While cyklus

Příkaz while se používá pro opakované provádění, dokud je výraz pravdivý:

1 while podminka:
2 telo

Příklady použití:

1 # Provadej vykonavani dokud pocet je mensi nez 10
2 pocet = 0
3 while pocet < 10:
4 print(pocet)
5 pocet += 2
6

7 # Pouziti break ve while loopu
8 pocet = 0
9 while pocet < 10:

10 if pocet == 8:
11 break
12 print(pocet)
13 pocet += 1

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 125 / 230

Python While cyklus

Příklady použití:

1 # Pouziti continue ve while loopu
2 count = 0
3 while count < 5:
4 count += 1
5 if count == 3:
6 continue
7 print(count)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 126 / 230

Výpočet odmocniny

Heronova metoda, také známá jako Babylónská metoda, je algoritmus pro
výpočet druhé odmocniny čísla. Je založena na iterativní aproximaci a je
definována následovně:Pro dané číslo S , pro které chceme najít druhou
odmocninu, a počáteční odhad x0, je iterativní vzorec pro Heronovu
metodu:

xn`1 “
1
2

ˆ

xn `
S

xn

˙

Metoda pokračuje v iteracích s tímto vzorcem, dokud je rozdíl mezi x2
n a S

menší než určená tolerance ϵ. Konečná hodnota x je potom považována za
aproximaci druhé odmocniny z S .

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 127 / 230

Heronova metoda pro Výpočet Druhé Odmocniny

Algorithm 1 Heronova Metoda
1: procedure odmocnina(S)
2: x Ð S
3: while |x2 ´ S | ą ϵ do

4: x Ð
1
2

ˆ

x `
S

x

˙

5: end while
6: return x
7: end procedure

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 128 / 230

Heronova metoda pro Výpočet Druhé Odmocniny

1 import math
2

3 cislo = 121
4 x = cislo
5

6 while abs(x*x - cislo) > 1e-6:
7 x = 0.5*(x + cislo/x)
8

9 print(x)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 129 / 230

Výpočet funkce sin

Taylorův rozvoj pro funkci sinus je dán vztahem:

sinpxq “ x ´
x3

3!
`

x5

5!
´

x7

7!
` ¨ ¨ ¨ “

8
ÿ

n“0

p´1qn
x2n`1

p2n ` 1q!

Například, pro aproximaci sinp1q pomocí Taylorova rozvoje kolem x “ 0
(Maclaurinovy řady):

sinp1q « 1 ´
13

3!
`

15

5!
´

17

7!
` ¨ ¨ ¨

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 130 / 230

Výpočet funkce sin

1 import math
2

3 x = 0.7
4

5 suma = x
6 cislo = 1
7 prirustek = x
8 while abs(prirustek) > 1e-8:
9 prirustek *= -1*x*x / ((cislo + 1)*(cislo + 2))

10 cislo += 2
11 suma += prirustek
12

13 print(suma)
14 print(math.sin (0.7))
15 print("Difference" ,(suma - math.sin (0.7)))

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 131 / 230

Příkaz match

Příkaz match je podobný konstrukci case a switch v jazyčích C, C++,
C++či Java.
Příkaz match byl představen v Pythonu 3.10 k zjednodušení
podmíněné logiky.
Příkaz match umožňuje porovnávat hodnotu s různými vzory, pouze
první porovnání které vyhoví bude "vykonáno"

1 match hodnota:
2 case vzor1:
3 # kodovy blok
4 case vzor2:
5 # kodovy blok
6

Zlepšuje čitelnost a snižuje zanořené if podmínky.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 132 / 230

Příkaz match

Při použití symbolu _ je možno zachytit všechny hodnoty.
S pomocí symbolu | je možné porovnat hodnoty s několika možnostmi.

1 ovoce = "cokoli" # jablko , banan , hruska , svestka
2 # tresen , merunka , jahoda ,
3 # ostruzina , malina
4

5 match ovoce:
6 case "jablko" | "hruska":
7 print("jadroviny")
8 case "svestka" | "tresen" | "merunka":
9 print("peckoviny")

10 case _:
11 print("Vsechno ostatni")

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 133 / 230

Přednáška 5

Funkce

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 134 / 230

Funkce v Pythonu

Funkce je uspořádané pořadí příkazů, provádějících požadovanou
operaci pro zadaný výčet parametrů. Příkazy jsou deklarovány v těle
funkce, parametry jsou uvedeny v záhlaví funkce.
Funkce v Pythonu se definuje pomocí klíčového slova def,
následovaného názvem funkce a parametry v závorkách, funkce nemusí
mít žádné parametry ().
Tělo funkce následuje na dalším řádku a musí být odsazeno.
Syntaxe pro definování funkce vypadá následovně:

1 def nazev_funkce(parametry_funkce): # jmeno funkce a
parametry funkce

2 """
3 docstring - dokumentacni retezec
4 """
5 prikazy # prikazy tela

funkce

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 135 / 230

Funkce v Pythonu — Fibonacciho čísla

Fibonacciho posloupnost je série čísel, kde každé číslo je součtem dvou
předcházejících čísel, obvykle začínající na 0 a 1. Fibonacciho
posloupnost lze definovat rekurentním vztahem:

F pnq “ F pn ´ 1q ` F pn ´ 2q, pro n ą 1, F p0q “ 0,F p1q “ 1

1 # Funkce na vypocet finabociho cisel
2 # https :// docs.python.org /3.12/ tutorial/controlflow.html
3 def fib(n):
4 """ Tisk Fibonacciho cisel od 0 do N"""
5 a, b = 0, 1
6 while a < n:
7 print(a, end=’ ’)
8 a, b = b, a+b
9 print()

10

11 # Zavolani funkce s parametrem 2000
12 fib (2000)
13 print(fib)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 136 / 230

Funkce v Pythonu

Prvním příkazem těla funkce může být volitelně řetězcový literál; tento
řetězcový literál je dokumentační řetězec funkce neboli docstring.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 137 / 230

Funkce v Pythonu

Spuštění funkce zavádí novou tabulku symbolů, která se používá pro
lokální proměnné funkce.
Funkce může mít parametry, které jí slouží k přijímání hodnot pro
zpracování.
Parametry volání funkce jsou zavedeny do lokální tabulky symbolů
volané funkce při jejím volání; argumenty se tedy předávají pomocí
volání podle hodnoty (kde hodnota je vždy odkaz na objekt, nikoli
hodnota objektu).

1 def soucetTriCisel(cislo1 , cislo2 , cislo3):
2 """ Toto je trivialni funkce scitajici tri cisla """
3 soucet = cislo1 + cislo2 + cislo3
4 return soucet
5

6 vysledek = soucetTriCisel (10 ,20 ,30)
7 print(vysledek)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 138 / 230

Funkce v Pythonu

Definice funkce spojuje jméno funkce s objektem funkce v aktuální
tabulce symbolů. Interpret rozpozná objekt, na který toto jméno
ukazuje, jako uživatelsky definovanou funkci.

1 >>>
2 fib
3 <function fib at 0x1024c4e00 >
4 f = fib
5 f(100)
6 0 1 1 2 3 5 8 13 21 34 55 89

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 139 / 230

Návratové Hodnoty Funkcí v jazyku Python

Funkce v Pythonu mohou vracet hodnoty pomocí příkazu return,
slouží k ukončení funkce a vrácení hodnoty.
Příkaz return je následován hodnotou nebo výrazem, který se má
vrátit.

1 # Funkce s parametrem
2 def secti(a, b):
3 return a + b
4

5 print(secti(3, 5))

Funkce v Pythonu mohou vracet více hodnot jako n-tici.
1 def obvod_a_obsah_kruhu(polomer):
2 obvod = 2 * 3.14 * polomer
3 obsah = 3.14 * (polomer ** 2)
4 return obvod , obsah
5

6 output = obvod_a_obsah_kruhu (5)
7 print(f"Obvod: {output [0]}, obsah: {output [1]}")

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 140 / 230

Funkce v jazyku Python — Použití Vracených Hodnot

Jestliže není použit žádný příkaz return, funkce vrací v Pythonu
implicitně None.

1 def pozdrav(slovo):
2 """ Funkce ktera tiskne <<<<< slovo >>>>>"""
3 print("<<<<< ",slovo , ">>>>>")
4

5 pozdrav("Ahoj")
6 print(pozdrav("Ahoj"))

1 <<<<< Ahoj >>>>>
2 <<<<< Ahoj >>>>>
3 None

Vracená hodnota může být přiřazena do proměnné nebo použita přímo.

1 vysledek = ziskej_hodnoty ()
2 print(vysledek)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 141 / 230

Fibonacciho cisla v Pythonu vracející seznam čísel

Přepsání předchozí funkce fib tak, aby vracela list hodnot
Fibonacciho posloupnosti:

1 # Funkce na vypocet finabociho cisel
2 # https :// docs.python.org /3.12/ tutorial/controlflow.html
3 def fib(n):
4 """ Vraceni Fibonacciho cisel od 0 do N v seznamu """
5 seznam = []
6 a, b = 0, 1
7 while a < n:
8 seznam.append(a)
9 a, b = b, a+b

10 return seznam
11

12 # Zavolani funkce s parametrem 2000
13 print(fib (2000))

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 142 / 230

Funkce v jazyku Python — defaultní parametry ve funkcích

Defaultní parametry funkcí umožňují přiřadit výchozí hodnotu
parametru, pokud není hodnota argumentu předána během volání
funkce.
Při volání funkce pokud není přítomen defaultní parametr, funkce je
spuštěna bez problému.
Po parametru/parametrech s defaultní hodnotou nemůže následovat
parametr bez defaultní hodnoty

1 def pozdrav(prijmeni , jmeno=""):
2 print("Dobry den , jsi: ", prijmeni + " " + jmeno)
3

4

5 pozdrav("Capek", "Karel") # Dobry den , jsi: Capek Karel
6 pozdrav("Novak") # Dobry den , jsi: Novak

Výchozí hodnota se vyhodnotí pouze jednou. To je rozdíl, pokud je
výchozí hodnotou proměnlivý objekt, jako je seznam, slovník nebo
instance většiny tříd.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 143 / 230

Funkce v jazyku Python — vyhodnocení defaultní parametry
ve funkcích

1 cislo = 3
2 def faktorial(n = cislo):
3 suma = 1
4 for i in range(1, n+1):
5 suma *= i
6 return suma
7

8 seznam = [5]
9 def faktorial_ze_seznamu(n = seznam):

10 suma = 1
11 cislo = seznam [0]
12 for i in range(1, cislo +1):
13 suma *= i
14 return suma
15

16 cislo = 10
17 seznam [0] = 25
18 print(faktorial ()) # 6
19 print(faktorial_ze_seznamu ()) # 15511210043330985984000000
Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 144 / 230

Funkce v jazyku Python — více o parametrech a
argumentech

Defaultní parametry funkcí umožňují přiřadit výchozí hodnotu
parametru, pokud není hodnota argumentu předána během volání
funkce.
Při volání funkce pokud není přítomen defaultní parametr, funkce je
spuštěna bez problému.
Po parametru/parametrech s defaultní hodnotou nemůže následovat
parametr bez defaultní hodnoty

1 def pozdrav(prijmeni , jmeno=""):
2 print("Dobry den , jsi: ", prijmeni + " " + jmeno)
3

4

5 pozdrav("Capek", "Karel") # Dobry den , jsi: Capek Karel
6 pozdrav("Novak") # Dobry den , jsi: Novak

Výchozí hodnota se vyhodnotí pouze jednou. To je rozdíl, pokud je
výchozí hodnotou proměnlivý objekt, jako je seznam, slovník nebo
instance většiny tříd.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 145 / 230

Funkce v jazyku Python — více o parametrech a
argumentech

Parametry a argumenty je možno kategorizovat:
poziční parametry — záleží pouze na pozici v které daný parametr je
napsán
keyword arguments — vztah mezi hodnotou a parametrem
defaultní parametry — viz předchozí text

Pomocí znaků * a / je možno vynucovat které typy argumentů funkce
akceptuje

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 146 / 230

Funkce v jazyku Python — více o parametrech a
argumentech

1 def fce(cislo1 , cislo2 , cislo3):
2 return cislo1 + cislo2 *10 + cislo3 *100
3

4 # print(fce(10, 20)) #fce() missing 1 required positional
argument: ’cislo3 ’

5 print(fce(10, 20, 30)) # Vysledek 3210
6 print(fce(cislo1 = 10, cislo2 = 20, cislo3 = 30)) # 3210
7 print(fce(cislo2 = 20, cislo3 = 30, cislo1 = 10)) # 3210
8 # print(fce(cislo1 = 10, 20, 30)) # Positional argument

follows keyword argument
9

10 def fce1(cislo1 , /, cislo2 , cislo3):
11 return cislo1 + cislo2 *10 + cislo3 *100
12

13 print(fce1(10, 20, 30)) # fce1() takes 0 positional
arguments but 3 were given

14 print(fce1(10, cislo2 = 20, cislo3 = 30)) # 3210

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 147 / 230

Funkce v jazyku Python — více o parametrech a
argumentech

1 # print(fce1(cislo2 = 20, cislo3 = 30, cislo1 = 10)) #fce1()
got some positional -only arguments passed as keyword

arguments: ’cislo1 ’
2

3 def fce2(*, cislo1 , cislo2 , cislo3):
4 return cislo1 + cislo2 *10 + cislo3 *100
5

6 # print(fce2(10, 20, 30)) # Chyba - fce2() takes 0
positional arguments but 3 were given

7 print(fce2(cislo1 = 10, cislo2 = 20, cislo3 = 30)) # 3210
8 print(fce2(cislo2 = 20, cislo3 = 30, cislo1 = 10)) # 3210

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 148 / 230

Funkce v jazyku Python — parametry a argumenty *argv

Arbitrary Argument Lists v Pythonu umožňují funkcím přijímat
libovolný počet argumentů.
Unpacking v Pythonu je proces, kdy se sekvence (např. seznam nebo
tuple) rozbalí na jednotlivé hodnoty.

1 def suma(*cisla):
2 """ Soucet vsech cisel na vstupu """
3 total = 0
4 for i in cisla:
5 total += i
6

7 return i
8

9 print(suma(1,2,3,4,5))
10 print(suma (*[10, 20, 30, 40, 50]))
11 print(suma (*(5, 6, 7, 8)))

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 149 / 230

Základní kreslení obrázků s Turtle

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 150 / 230

Python Turtle: Úvod

Modul Turtle v Pythonu umožňuje kreslení pomocí želvy známé z
Logo.
Základní princip: vytvoření želvy, která se pohybuje a kreslí na plátně
pomocí jednoduchých příkazů.
Více informací na
https://docs.python.org/3/library/turtle.html

1 import turtle # import zelvy
2

3 zelva = turtle.Turtle () # Vytvoreni zelvy
4 for i in range (50):
5 zelva.right(i*3)
6 zelva.forward (50)
7

8 zelva.screen.mainloop ()

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 151 / 230

https://docs.python.org/3/library/turtle.html

Grafický výsledek

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 152 / 230

Základní Příkazy s Python Turtle

Příkaz Popis
forward(vzdálenost) Posune želvu vpřed o zadanou vzdálenost.
backward(vzdálenost) Posune želvu vzad o zadanou vzdálenost.

left(úhel) Otočí želvu doleva o zadaný úhel.
right(úhel) Otočí želvu doprava o zadaný úhel.
setpos(x, y) Nastaví pozici želvy na zadané souřadnice x a y.
goto(x, y) Přesune želvu na nové místo s kreslením.

teleport(x, y) Přesune želvu na nové místo bez kreslení.
setx(x) Nastaví pozici želvy na danou souřadnici x.
sety(y) Nastaví pozici želvy na danou souřadnici y.
home() Posune želvu na počáteční pozici a směr.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 153 / 230

Pokročilé Příkazy s Python Turtle

Příkaz Popis
circle(poloměr) Nakreslí kruh s daným poloměrem.

dot(velikost, barva) Vykreslí tečku s danou velikostí a barvou.
speed(rychlost) Nastaví rychlost pohybu želvy.
fillcolor(barva) Nastaví barvu výplně tvarů.
pencolor(barva) Nastaví barvu pera.
bgcolor(barva) Nastaví barvu pozadí.

pendown() Sestoupí pero a začne kreslit.
penup() Zvedne pero a přesune želvu bez kreslení.
clear() Smaže všechny stopy želvy na obrazovce.

fill(True/False) Zapne nebo vypne výplň objektů.
begin_fill() Začne kreslit tvar pro vyplnění.
end_fill() Ukončí kreslení tvaru pro vyplnění.
isdown() Vrátí True, pokud je pero dolů, jinak False.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 154 / 230

Pokročilé Příkazy s Python Turtle

Příkaz Popis
isvisible() Vrátí True, pokud je želva viditelná, jinak

False.
showturtle() Zobrazí želvu na obrazovce.
hideturtle() Skryje želvu na obrazovce.

setheading(úhel) Nastaví směr, do kterého bude želva směřo-
vat.

turtle.distance(x, y) Vrátí vzdálenost želvy od bodu s danými sou-
řadnicemi.

turtle.heading() Vrátí aktuální úhel želvy na obrazovce.
turtle.towards(x, y) Vrátí úhel mezi aktuální pozicí želvy a bodem

s danými souřadnicemi.
turtle.reset() Vrátí všechny nastavení želvy na výchozí

hodnoty.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 155 / 230

Obrazovka Python Turtle

Obrazovka Python Turtle slouží jako plátno, na kterém želva kreslí.
Poskytuje vizuální reprezentaci pohybů želvy a výkresů.
Můžeme ovládat velikost, barvu pozadí a další vlastnosti obrazovky
Turtle.

Funkce Obrazovky Turtle:

setup(šířka, výška) Nastavení velikosti obrazovky
bgcolor(barva) Nastavení barvy pozadí
hideturtle() Skrytí želvy na obrazovce
showturtle() Zobrazení želvy na obrazovce
mainloop() Funkce pro udržení programu otevřeného až

do uzavření okna.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 156 / 230

Python Turtle - Příklad 1

1 import turtle # import zelvy
2

3 zelva = turtle.Turtle () # Vytvoreni zelvy
4 zelva.shape(’turtle ’)
5 posun = 400
6 for _ in range (20):
7 for _ in range (4):
8 zelva.forward(posun)
9 zelva.left (90)

10 posun -= 40
11

12 zelva.screen.mainloop ()

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 157 / 230

Python Turtle - Příklad 1 výsledek

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 158 / 230

Python Turtle - Příklad 1

1 import turtle # import zelvy
2

3 zelva = turtle.Turtle () # Vytvoreni zelvy
4 zelva.shape(’turtle ’)
5 posun = 400
6 for _ in range (20):
7 for _ in range (4):
8 zelva.forward(posun)
9 zelva.left (90)

10 posun -= 40
11

12 zelva.screen.mainloop ()

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 159 / 230

Python Turtle - Grafické znázornění úlohy 2.3

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 160 / 230

Rekurze

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 161 / 230

Rekurze v Python funkcích

Rekurze je programovací technika, kdy funkce volá sám sebe k řešení
menších instancí stejného problému.
Rekurze spočívá v řešení problémů rozdělením na menší podobné
podproblémy.
Zásadní je zabránit nekonečné rekursi.
Rekurze může být elegantním řešením pro určité problémy, ale nemusí
být vždy nejefektivnější.
Hloubka rekurze — počet rekurzivních volání funkce.

1 def rekurze(parametry):
2 # blok kodu
3 if podminka:
4 # neco co ukonci rekurzi
5 else:
6 rekurze(parametry)
7 # blok kodu

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 162 / 230

Přímá a nepřímá rekurse, výhody a nevýhody rekurze

Existují dva typy rekurze:
Přímá rekurze nastává, když funkce volá sama sebe přímo.
Nepřímá rekurze je situace, kdy funkce volá jinou funkci, která zase
může volat původní funkci.

Výhody Rekurze:
Jednoduché a čisté řešení problémů.
Zlepšuje čitelnost kódu pro určité problémy.
Často odpovídá přirozené rekurzivní povaze problémů.
Může být krátký a elegantní zápis řešení.

Nevýhody Rekurze:
Může využívat více paměti než iterativní řešení.
Riziko přetečení zásobníku při hluboké rekurzi.
Může být méně efektivní než iterativní řešení pro některé problémy.
Obtížnější k pochopení pro některé vývojáře.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 163 / 230

Iterace

Opakování činnosti s cyklem nebo smyčkou
Často používané pro zpracování seznamů a lineárních operací
Může být efektivnější pro některé problémy s lineárním průchodem
Je zde velmi úzká návaznost s rekurzí
Rekurzi je možno přepsat iterací a naopak
Výhody Iterace:

Efektivní pro lineární zpracování dat.
Méně paměťově náročné než rekurze.
Jednodušší a přehlednější pro některé problémy.

Nevýhody Iterace:
Pro některé problémy může být složitější než rekurze.
Může vyžadovat více kódu a být méně elegantní.
Méně intuitivní pro některé matematické problémy.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 164 / 230

Rekurze v Python funkcích — Výpočet faktoriálu rekurzí

Faktoriál čísla n má definici

n! “

#

1 , když n “ 0
n ˆ pn ´ 1q! , když n ą 0

Tento kód demonstruje přímou rekurzi při výpočtu faktoriálu čísla.

1 def faktorial(n):
2 if n <= 1:
3 return 1
4 else:
5 return n * faktorial(n-1)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 165 / 230

Rekurze v Python funkcích — Fibonacciho posloupnosti

Fibonacciho posloupnost má následující definici

F pnq “

$

’

&

’

%

0 ,když n “ 0
1 ,když n “ 1
F pn ´ 1q ` F pn ´ 2q ,když n ą 1

Tento kód demonstruje přímou rekurzi při výpočtu Fibonacciho
posloupnosti (výsledný kód je značně neefektivní)

1 def fibonacci(n):
2 if n <= 1:
3 return n
4 else:
5 return(fibonacci(n-1) + fibonacci(n-2))

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 166 / 230

Fibonacci posloupnost - strom volání rekurzivní funkce fib(6)

fibp6q

fibp5q

fibp4q

fibp3q

fibp2q

fibp1q fibp0q

fibp1q

fibp2q

fibp1q fibp0q

fibp3q

fibp2q

fibp1q fibp0q

fibp1q

fibp4q

fibp3q

fibp2q

fibp1q fibp0q

fibp1q

fibp2q

fibp1q fibp0q

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 167 / 230

Rekurze v Python funkcích — Fibonacciho posloupnosti

1 import time
2

3 pocet_volani = 0
4

5 def fibonacci(n):
6 global pocet_volani
7 pocet_volani += 1
8 if n <= 1:
9 return n

10 else:
11 return(fibonacci(n-1) + fibonacci(n-2))
12

13 for i in range (1,50):
14 pocet_volani = 0
15 # Zjisti aktualni cas v sekundach
16 curr = time.time()
17 fib = fibonacci(i)
18 diff = time.time() - curr
19 print(f"{i}: {fib} volani = {pocet_volani} "
20 f"cas[sec] = {diff :0.2f}")

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 168 / 230

Rekurze v Python funkcích — Fibonacciho posloupnosti

n výsledek počet volání čas[sec]
1 1 1 0.00
2 1 3 0.00
3 2 5 0.00
4 3 9 0.00
5 5 15 0.00
6 8 25 0.00
7 13 41 0.00
8 21 67 0.00
9 34 109 0.00

10 55 177 0.00
11 89 287 0.00
12 144 465 0.00
13 233 753 0.00
14 377 1219 0.00

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 169 / 230

Rekurze v Python funkcích — Fibonacciho posloupnosti

n výsledek počet volání čas[sec]
15 610 1973 0.00
16 987 3193 0.00
17 1597 5167 0.00
18 2584 8361 0.00
19 4181 13529 0.00
20 6765 21891 0.00
21 10946 35421 0.00
22 17711 57313 0.00
23 28657 92735 0.01
24 46368 150049 0.01
25 75025 242785 0.01
26 121393 392835 0.02
27 196418 635621 0.04
28 317811 1028457 0.06

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 170 / 230

Rekurze v Python funkcích — Fibonacciho posloupnosti

n výsledek počet volání čas[sec]
29 514229 1664079 0.09
30 832040 2692537 0.15
31 1346269 4356617 0.24
32 2178309 7049155 0.38
33 3524578 11405773 0.62
34 5702887 18454929 1.01
35 9227465 29860703 1.61
36 14930352 48315633 2.62
37 24157817 78176337 4.26
38 39088169 126491971 6.96
39 63245986 204668309 11.32
40 102334155 331160281 18.33
41 165580141 535828591 29.64
42 267914296 866988873 47.80

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 171 / 230

Rekurze v Python funkcích — Fibonacciho posloupnosti

n výsledek počet volání čas[sec]
43 433494437 1402817465 77.39
44 701408733 2269806339 122.43
45 1134903170 3672623805 198.14
46 1836311903 5942430145 321.02
47 2971215073 9615053951 725.29
48 4807526976 15557484097 869.81
49 7778742049 25172538049 2463.32

Čas nutný pro výpočet Fibonacciho posloupnosti pomocí interakce pro
prvních 49 prvků je 37µs

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 172 / 230

Ukázka fraktálů - nekonečně členité útvary

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 173 / 230

Ukázka fraktálů - 1

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 174 / 230

Ukázka fraktálů - 2

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 175 / 230

Ukázka fraktálů - 3 - Kochova vločka

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 176 / 230

List comprehenions

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 177 / 230

Co je List Comprehension?

List Comprehension je elegantní způsob tvorby seznamů v Pythonu.
Umožňuje kompaktní a čistý zápis operací na seznamech.
Zlepšuje efektivitu a čitelnost kódu.
Základní syntaxe List Comprehension:

1 [expression for item in list if condition]
2 [x**2 for x in range (1 ,6)]

Podporuje vytváření nových seznamů, slovníků nebo množin.
Kompaktní formát umožňuje provádět operace na seznamech
efektivně.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 178 / 230

Příklady List Comprehension

Seznam druhých mocnin čísel od 1 do 5:

1 [x**2 for x in range (1,6)]

Seznam lichých čísel od 1 do 10:

1 [x for x in range (1,11) if x % 2 != 0]

Seznam písmen v řetězci Dobry den:

1 [letter for letter in ’Dobry den’]

Seznam součtů prvků z dvou seznamů:

1 [x + y for x in [1, 2, 3] for y in [4, 5, 6]]

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 179 / 230

Další Příklady List Comprehension

Výběr x z listu (x,y)

1 x = [x for x, y in body]
2 y = [y for x, y in body]

Vrať (x,y) pro body (x,y) které jsou do určité vzdálenosti od těžiště:

1 [(x, y) for x,y in body if vzdal ((x, y), teziste) < 20]

Seznam platných emailových adres z daného seznamu:

1 [email for email in emails if is_valid(email)]

Seznam slov s délkou větší než 6 z daného seznamu slov:

1 [sport for sport in [’biatlon ’, ’lyzovani ’, ’cyklistika ’
, ’beh’] if len(sport) > 5]

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 180 / 230

List Comprehension

1 >>> print([x**2 for x in range (1,6)])
2 [1, 4, 9, 16, 25]
3 >>> print([x for x in range (1,11) if x % 2 != 0])
4 [1, 3, 5, 7, 9]
5 >>> print([letter for letter in ’Dobry den’])
6 [’D’, ’o’, ’b’, ’r’, ’y’, ’ ’, ’d’, ’e’, ’n’]
7 >>> print([x + y for x in [1, 2, 3] for y in [4, 5, 6]])
8 [5, 6, 7, 6, 7, 8, 7, 8, 9]
9 >>> body = [(10 ,20), (23 ,65), (-3,-20)]

10 >>> print([x for x, y in body])
11 [10, 23, -3]
12 >>> print([sport for sport in [’biatlon ’, ’lyzovani ’, ’

cyklistika ’, ’beh’]
13 ... if len(sport) > 5])
14 [’biatlon ’, ’lyzovani ’, ’cyklistika ’]
15 >>> print ([(x, y) for x, y in body if x + y < 20])
16 [(-3, -20)]

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 181 / 230

Simulace

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 182 / 230

Co je Monte Carlo Simulace?

Monte Carlo simulace je výpočetní technika, která využívá náhodný
výběr k řešení matematických problémů.
Poskytuje přibližné řešení simuluje velké množství náhodných vzorků
nebo scénářů.
Metody Monte Carlo jsou široce využívány v různých oblastech jako je
finance, inženýrství a fyzika pro analýzu rizika, optimalizaci a analýzu
nejistoty.
Monte Carlo simulace se skládá z následujících kroků:

1 Definování problému a modelování systému.
2 Generování náhodných vstupů na základě pravděpodobnostních

rozdělení.
3 Provedení simulací spuštěním modelu s náhodnými vstupy.
4 Analýza výsledků a vyvození závěrů na základě statistické analýzy.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 183 / 230

Monte Carlo Simulace v Pythonu — Úvod do modulu
random

Python poskytuje výkonné knihovny jako NumPy a pandas pro
manipulaci s numerickými výpočty a analýzu dat.
Modul ‘random‘ v Pythonu lze použít k generování náhodných čísel
potřebných pro Monte Carlo simulace.
Modul random v Pythonu poskytuje funkce pro generování náhodných
čísel a sekvencí.
Je to vestavěný modul, který je užitečný pro různé aplikace jako jsou
simulace, hry a statistická analýza.
Pro generování náhodného celého čísla v daném rozmezí pomocí
random.randint():

1 import random
2

3 nahodne_cislo = random.randint(1, 10)
4 print(nahodne_cislo)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 184 / 230

Výběr Náhodného Prvku z Listu

Pro výběr náhodného prvku z listu pomocí random.choice():

1 import random
2

3 ovoce = [’jablko ’, ’banan’, ’tresen ’]
4 nahodne_ovoce = random.choice(ovoce)
5 print(nahodne_ovoce)

Pro náhodné zamíchání prvků v listu pomocí random.shuffle():

1 import random
2

3 list = [1, 2, 3, 4, 5]
4 random.shuffle(list)
5 print(list)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 185 / 230

Proč použít random.seed

Funkce random.seed v Pythonu se používá k inicializaci generátoru
náhodných čísel.
Pomáhá stanovit výchozí bod pro generování náhodných čísel, což
zajišťuje reprodukovatelnost výsledků.
Využití random.seed se stejným základem zaručuje stejnou
posloupnost náhodných čísel pokaždé.
Pro nastavení specifické hodnoty základu: random.seed(základ)

1 import random
2

3 random.seed (42)
4 print(random.randint(1, 100))}

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 186 / 230

Úvod k Funkci random.normalvariate(strh, smero)

Gaussova funkce (normální distribuční funkce) je definována jako:

f pxq “
1

σ
?

2π
e´

px´µq2

2σ2 (3)

kde:
x je proměnná,
µ je střední hodnota distribuce,
σ je směrodatná odchylka distribuce,
e je základ přirozeného logaritmu a
π je matematická konstanta pi.
Funkce random.normalvariate(strh, smero) v Pythonu se
používá k generování náhodných čísel z normálního rozdělení.

1 import random
2

3 nahodne_cislo = random.normalvariate (0, 1)
4 print(nahodne_cislo)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 187 / 230

Simulace hodu jednou koskou

1 import random
2

3 def hod_koskou ():
4 return random.randint (1,6)
5

6 def simulace ():
7 if (hod_koskou () == 1):
8 return True
9 else:

10 return False
11

12 POCETSIMULACI = 100000
13 uspesnych = 0
14 for i in range(POCETSIMULACI):
15 if (simulace ()):
16 uspesnych += 1
17

18 print(uspesnych / POCETSIMULACI)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 188 / 230

Narozeninový paradox

Narozeninový paradox jejev v teorii pravděpodobnosti, který říká, že v
relativně malé skupině lidí je pravděpodobnost, že minimálně dva lidé sdílejí
stejný narozeninový den, překvapivě vysoká. Konkrétně s pouhými 23 lidmi
je šance 50%, tento počet je mnohem menší než intuitivní odhad.
Pro výpočet označme:

d - počet dnů v roce
n - počet lidí ve skupině

Pravděpodobnost, že všichni n jedinci mají různé narozeniny, je:

Ppnq “
d

d
ˆ

d ´ 1
d

ˆ
d ´ 2
d

ˆ ... ˆ
d ´ n ` 1

d
“

d!

pd ´ nq! ˆ dn

Pravděpodobnost P̃ , že minimálně dva lidé sdílejí narozeniny, je doplněk
této pravděpodobnosti:

P̃pnq “ 1 ´ Ppnq “ 1 ´
d!

pd ´ nq! ˆ dn

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 189 / 230

Narozeninový paradox

1 import random
2 # Simulace narozeni - index 0 = 1.1, index 364 = konec roku
3 def simulace_narozeni ():
4 return random.randint(0, 365)
5 def simulace(n):
6 narpole = [0 for x in range (366)]
7 for _ in range(n):
8 nar = simulace_narozeni ()
9 narpole[nar] += 1

10 if (narpole[nar] > 1):
11 return True
12 return False
13 POCET = 10000
14 for i in range (1 ,365):
15 sum = 0
16 for _ in range(POCET):
17 sum += (1 if simulace(i) else 0)
18 pravd = sum/POCET
19 print(f"{i} - {pravd *100:.1f}%")
20 if (pravd >= 0.5): exit()

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 190 / 230

Problém pasoucí se kozy

Zahrada kruhového tvaru má poloměr r = 10m. Do zahrady umístíme
kozu, kterou přivážeme provazem ke kolíku zatlučenému v obvodu zahrady.
Jakou délku musí mít provaz, aby koza spásla trávu právě z poloviny plochy
zahrady56? Řešení je rovno r “ 1.15872847 . . .

5https://safehammad.com/post/2020/12/24/the-goat-of-monte-carlo/
6https://en.wikipedia.org/wiki/Goat_grazing_problem

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 191 / 230

https://safehammad.com/post/2020/12/24/the-goat-of-monte-carlo/
https://en.wikipedia.org/wiki/Goat_grazing_problem

Problém pasoucí se kozy - 1

1 import random
2

3 # Koza [0,0], kruznice [0,1]
4 def koza(r):
5 x = random.uniform(-1, 1)
6 y = random.uniform(-1, 1)
7 # Provadime dokud koza nebude v pozemku
8 while (x*x + y*y > 1):
9 x = random.uniform(-1, 1)

10 y = random.uniform(-1, 1)
11 # Jsme tam , kde koza muze jist?
12 return (x*x + (y+1)*(y+1) <= r*r)
13

14 def simulace(N, r):
15 sum = 0
16 for _ in range(N):
17 sum += (1 if koza(r) else 0)
18 print(f"{r} = {sum/N}")
19 return sum/N

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 192 / 230

Problém pasoucí se kozy - 2

20 N = 1_000_000
21 R = 1
22 d_mez = 0
23 h_mez = R*2 # odhadnuta inicialni hodnota
24

25 # Puleni intervalu
26 while (abs(d_mez - h_mez) > 1e-4):
27 n_mez = 0.5 * (d_mez + h_mez)
28 hodnota = simulace(N, n_mez)
29 if hodnota > 0.5:
30 h_mez = n_mez
31 elif hodnota < 0.5:
32 d_mez = n_mez
33 else:
34 break
35 print(f"Reseni je {0.5*(d_mez + h_mez)}")
36 # Exaktni reseni(pro r = 1): 1.15872...

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 193 / 230

Funkce print() a formátování výstupu

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 194 / 230

Úvod k funkci print

Funkce print() v Pythonu slouží k zobrazení výstupu na obrazovce.
Je to všestranná funkce, která umožňuje přizpůsobení formátu výstupu.
Tisk může být použit ve funkcích k zobrazení mezivýsledků nebo
finálních výstupů.
Syntaxe:

1 print(value(s), sep=’ ’, end=’**’, file=soubor , flush=
True)

sep slouží k určení oddělovače mezi hodnotami, které jsou vytisknuty.
Ve výchozím nastavení je oddělovač mezerou
end určuje znak nebo řetězec, který je vytisknut na konci výstupu. Ve
výchozím nastavení end=’\n’ přidá na konec výstupu nový řádek
file slouží k určení souboru, kam se výstup zapíše. Ve výchozím
nastavení je výstup tisknut na standardní výstup (obvykle do konzole)
flush řídí, zda je výstupní buffer po tisku vyprázdněn. Pokud je
flush=True, vyprazdňuje se výstupní buffer a všechna data budou
okamžitě zapsána do souboru nebo konzole, jinak buffer nemusí být
okamžitě vyprázdněn, což může zlepšit výkon ve vybraných případech.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 195 / 230

f-strings v Pythonu

f-strings jsou funkcí v Pythonu pro formátování řetězců tak, aby bylo
možné zahrnout hodnoty proměnných způsobem, který je stručný a
snadno čitelný.
f-strings vytvoříte přidáním prefixu f nebo F k řetězci a zahrnutím
složených závorek {} s výrazy uvnitř, které se mají vyhodnotit a
formátovat.
ve složených závorkách je možno použít i výraz, například {cena *
100.0}

Příklad:

1 vyrobek = ’Tycinka musli ’
2 cena = 80
3 print(f"Vyrobek {vyrobek} stoji {cena} Kc.")
4

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 196 / 230

Úvod do Pokročilého Formátování Řetězců v Pythonu

Pokročilé formátování řetězců v Pythonu poskytuje podrobnou kontrolu
nad způsobem, jak jsou data prezentována, v souladu s specifikacemi
uvedenými v PEP 3101. Umožňuje přesné formátování, včetně zarovnání,
doplnění, správy znamének a dalších.

1 num = 42
2 formatted_num = f’Cislo: {num :+ >10}’
3 print(formatted_num)
4

1 pi = 3.14159
2 formatted_pi = f’Hodnota Pi: {pi :+10.2f}’
3 print(formatted_pi)
4

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 197 / 230

Obecná Forma Standardních Formátovacích Specifikátorů

Obecná forma standardního formátovacího specifikátoru v Pythonu je

1 [[fill]align][sign][#][0][minwidth][. precision][type]

fill - (nepovinný znak) definuje znak, který se použije pro vyplnění
pole na minimální šířku. Za znakem výplně, pokud je přítomen, musí
následovat příznak zarovnání.
align - volitelný zarovnávací příkaz může být jedním z následujících:

< - zarovná hodnotu doleva uvnitř určené šířky.
> - zarovná hodnotu doprava uvnitř určené šířky.
ˆ - zarovná hodnotu na střed uvnitř určené šířky.
= - nutí vložit mezery po znaménku (pokud existuje), ale před číslicemi.
’ ’ - vloží mezeru před hodnotou, efektivně ji zarovná doprava a
zajistí, že kladná čísla začínají vždy s mezerou.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 198 / 230

Obecná Forma Standardních Formátovacích Specifikátorů

sign - volitelný znaménkový příznak, platí pouze pro číselné typy a
může mít jednu z následujících hodnot:

’+’: Vynutí zahrnutí znaménka (+ nebo -) před číslicí.
’-’: Pouze negativní čísla jsou předznačena znaménkem.
’ ’: Kladná čísla jsou předznačena mezerou a negativní znaménkem.

Pokud je přítomen znak #, používají celá čísla pro formátování
alternativní tvar. To znamená, že binární, oktalový a hexadecimální
výstup bude mít předponu 0b, 0o a 0x.
Pokud je před polem šířky uveden znak nula 0, je povoleno doplňování
nulou. To odpovídá typu zarovnání = a znaku výplně 0.
minwidth je celé číslo definující minimální šířku pole. Pokud není
zadána, bude šířka pole určena obsahem.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 199 / 230

Obecná Forma Standardních Formátovacích Specifikátorů

precision je desetinné číslo udávající, kolik číslic se má zobrazit za
desetinnou čárkou při převodu s plovoucí desetinnou čárkou. U
nečíselných typů pole udává maximální velikost pole - jinými slovy,
kolik znaků bude použito z obsahu pole. U celočíselných převodů se
přesnost ignoruje.
type

Volitelný typ příznaku může být jeden z následujících pro celá čísla:
b: Binární formát
c: Formát znaku
d: Desetinný formát
o: Osmičkový formát
x: Hexadecimální formát (malá písmena)
X: Hexadecimální formát (velká písmena)
n: Číselný formát (lokální specifický)

Pro čísla s pohyblivou řádovou čárkou jsou k dispozici následující typy
e: Exponenciální zápis (malé ’e’)
E: Exponenciální zápis (velké ’E’)
f: Fixní desetinný zápis
g: Obecný formát (pokud je exponent větší než -4 nebo menší než
přesnost, použije se vědecký zápis, jinak desetinný zápis)
G: Obecný formát (velká verze ’g’)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 200 / 230

Ukázky použití f-strings

f-string s výrazem
1 num1 , num2 = 10, 20
2 print(f"The sum of {num1} and {num2} is {num1 + num2}.")

f-string s použitím slovníků
1 person = {’name’: ’John’, ’age’: 25}
2 print(f"Person ’s name is {person[’name ’]} and age is {

person[’age ’]}.")

f-string s formátovaným výstupem:
1 >>> cislo = 123.456789
2 >>>
3 >>> print(f"{cislo:X>+20}")
4 XXXXXXXXX +123.456789
5 >>> print(f"{cislo:X<20}")
6 123.456789 XXXXXXXXXX
7 >>> print(f"{cislo:X<20.3f}")
8 123.457 XXXXXXXXXXXXX
9 >>> print(f"{cislo:X<20.3f}")

10 123.457 XXXXXXXXXXXXX
11 >>> print(f"{cislo: >10.3f}")
12 123.457

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 201 / 230

Moduly v Pythonu

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 202 / 230

Moduly v Pythonu

Moduly v Pythonu jsou soubory obsahující kód v jazyce Python, který
definuje funkce, třídy a proměnné, které lze použít v jiných
programech v Pythonu.
Pomáhají organizovat kód a usnadňují opakovatelnost kódu.
Moduly jak ze standardní knihovny, tak z třetích stran
Pro použití kódu z modulu v programu v Pythonu je třeba importovat
modul pomocí příkazu import.
Modul je možné importovat do dalšího modulu, či do main modulu
(zdrojový soubor který byl spuštěn)
Standardní knihovna Pythonu obsahuje širokou škálu modulů
poskytujících funkce pro úkoly jako jsou operace se soubory, práce
sítěmi, matematika a další.

1 import math
2

3 print(math.pi)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 203 / 230

Moduly v Pythonu — ukázka

Jméno souboru je jméno modulu s příponou .py. Například soubor
faktorial.py definuje modul faktorial:

1 # Faktorial module
2

3 def faktorial(n):
4 """ Funkce na vypocet faktorialu """
5 sum = 1
6 for i in range(2, n + 1):
7 sum *= i
8 return sum
9

10 if (__name__ == "__main__"):
11 for i in range (10):
12 print(f"Factorial ({i}) = {faktorial(i)}")

Pokud budeme chtít pracovat s modulem faktorial, je potřeba
modul importovat:

1 import faktorial

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 204 / 230

Moduly v Pythonu

Modul může obsahovat spustitelné příkazy i definice funkcí. Tyto
příkazy jsou určeny k inicializaci modulu. Jsou provedeny pouze při
prvním setkání s názvem modulu v příkazu import
Každý modul má svůj vlastní soukromý jmenný prostor, který je
používán jako globální jmenný prostor všemi funkcemi definovanými v
modulu.
Moduly mohou importovat jiné moduly. Je obvyklé, ale ne povinné,
umístit všechny příkazy import na začátek modulu (nebo skriptu, když
na to přijde).
Existuje varianta příkazu import, která importuje názvy z modulu
přímo do jmenného prostoru importujícího modulu. Například:

1 from pocitani import soucet , soucet2
2 soucet (10 ,34.5)

Tím se nezavádí název modulu, z něhož jsou importy v lokálním
jmenném prostoru převzaty (není definován modul pocitani).

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 205 / 230

Porozumění proměnné __name__ v modulech

Proměnná __name__ v modulech v Pythonu je speciální vestavěnou
proměnnou, která uchovává název aktuálního modulu.
Když je modul spuštěn jako hlavní program, __name__ je nastaveno
na __main__; když je importován jako modul, __name__ je nastaveno
na název modulu.

1 def soucet(c1, c2):
2 return c1 + c2
3

4 # Je spousten primo?
5 if __name__ == "__main__":
6 print("Tento modul je spusten primo.")
7 else:
8 print("Tento modul je importovan.")

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 206 / 230

Moduly v Pythonu

Importování všech jmen, která modul definuje:

1 from pocitani import *
2 soucet (10 ,34.5)

Tím se nezavádí název modulu, z něhož jsou importy v lokálním
jmenném prostoru převzaty (není definován modul pocitani). Tento
zápis se nedoporučuje,importují všechna jména kromě těch, která
začínají podtržítkem _

Pokud za názvem modulu následuje as, pak se jméno následující za as
váže přímo na importovaný modul.

1 import pocitani as poc
2 poc.soucet (10 ,34.5)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 207 / 230

Cesta k hledání modulů v Pythonu

když je importován modul, interpretr hledá modul v built-in modulu
stejného jména. Tyto moduly se dají vypsat pomocí proměnné
sys.builtin_module_names
pokud modul není nalezen je hledán soubor v listu adresářů které jsou
definovány proměnnou sys.path. Tato proměnná je inicializována:

adresář který obsahuje zdrojový skript
adresáře v shell proměnné PYTHONPATH
...

funkce dir() vytiskne všechna jména aktuálně definovány,
dir(modul) vytiskne všechna jména definována v daném modulu

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 208 / 230

Přehled Balíčků v Pythonu

Balíčky v Pythonu jsou způsobem organizování souvisejících modulů
do jednoho hierarchicky uspořádaného adresáře - tato hierarchická
struktura umožňuje lepší organizaci kódu a snazší navigaci v související
funkčnosti.
Pomáhají modulovat kód, vyhnout se konfliktům v pojmenování a
zlepšit organizaci a údržbu kódu.
Pro vytvoření balíčku v Pythonu je potřeba vytvořit soubor
__init__.py uvnitř adresáře.
Soubor __init__.py může být prázdný, nebo může obsahovat
iniciační kód balíčku.
Moduly uvnitř balíčku lze importovat pomocí tečkové notace, kde se
zadá nejprve název balíčku a poté název modulu.
Například pro import modulu body z balíčku cvut se použije import
cvut.body.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 209 / 230

Jména a hodnoty

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 210 / 230

Mutable and immutable objekty

Mutable objekty v Pythonu mohou být po vytvoření změněny.
Immutable objekty v Pythonu nelze měnit po jejich vytvoření,
zachovávají svůj původní stav.
Příklady immutable objektů: celá čísla (int), reálná čísla (float),
řetězce (str), n-tice (tuple), neměnná posloupnost bytů (bytes),
bytové pole (bytearray), zmrazené množiny (frozenset), komplexní
čísla (complex), boolovské hodnoty (bool), logický datový typ
představující hodnoty True nebo False.
Příklady mutable objektů: seznamy (list), slovníky (dict), množiny
(set), pole bytů (bytearray), uživatelsky definované třídy (objekty
vytvořené z uživatelsky definovaných tříd mohou být měnitelné podle
toho, jak jsou implementovány).

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 211 / 230

Jména a hodnoty7

Přiřazení zajistí že jméno odkazuje na hodnotu

1 num = 100
2 print(num) # 100

num 100

Více jmen může odkazovat na stejnou hodnotu

1 num = 100
2 num1 = num # num1 neodkazuje na num , ale na hodnotu 100
3 print(cislo1) # 100

num

num1

100

7Převzato z https://nedbatchelder.com/text/names1.html
Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 212 / 230

https://nedbatchelder.com/text/names1.html

Jména a hodnoty ...8

Jména jsou přiřazována nezávisle

1 num = 100
2 num1 = num

num

num1

100

1 num = 200

num

num1

200

100

8Převzato z https://nedbatchelder.com/text/names1.html
Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 213 / 230

https://nedbatchelder.com/text/names1.html

Jména a hodnoty ...9

Hodnoty žijí dokud na ně je alespoň jeden odkaz (pak jsou smazány)

1 s = ’Ho’
2 s = ’Hi’

s ’Hi’

’Ho’

Přiřazení nikdy nekopírují data
1 pole1 = [1, 2, 3]
2 pole2 = pole1

9Převzato z https://nedbatchelder.com/text/names1.html
Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 214 / 230

https://nedbatchelder.com/text/names1.html

Jména a hodnoty ...10

Přiřazení nikdy nekopírují data
1 pole1 = [1, 2, 3]
2 pole2 = pole1
3 pole1.append (4)
4 print(pole2) # [1, 2, 3, 4] !!!!!

pole1

pole2

[1, 2, 3, 4]

Toto neplatí pro immutable data
1 x = "hello"
2 y = x
3 x = x + " neco dalsiho"
4 # x = "hello neco dalsiho"
5 # y = "hello"

10Převzato z https://nedbatchelder.com/text/names1.html
Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 215 / 230

https://nedbatchelder.com/text/names1.html

Jména a hodnoty ...11

Varianty přiřazení (mutable a immutable objekty)

1 x += y
2 x = x + y # koncepcne
3 x = x.__iadd__(y) # v podstate se vola __iadd__
4

5 # nasledujici dva radky jsou podobne
6 pole += [4, 5]
7 pole.extend ([4, 5])

1 #Pseudo code
2 class List:
3 def __iadd__(self , other):
4 self.extend(other)
5 return self

Vše co se může vyskytnout na pravé straně přiřazení je reference
(elementy listu, hodnoty a klíče slovníku, ...)

11Převzato z https://nedbatchelder.com/text/names1.html
Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 216 / 230

https://nedbatchelder.com/text/names1.html

Jména a hodnoty ...12

Co vše je přiřazení:

1 x = ...
2 for x in ...
3 def x(...)
4 def fce(x):
5 ...

Příklad pro for cyklus

1 cisla = ["ahoj", "cau", "hello"]
2 for s in cisla: # prirazeni s = cisla [0] ...
3 s.upper()
4 print (cisla). # zadna zmena

https://pythontutor.com/

12Převzato z https://nedbatchelder.com/text/names1.html
Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 217 / 230

https://pythontutor.com/
https://nedbatchelder.com/text/names1.html

Předávání proměnných hodnotou a referencí

Předávání proměnné hodnotou či předávání referencí - takto uvažovat
v Pythonu je matoucí viz několik posledních slide.

1 def pridej_bod(list_bodu , bod):
2 """ Meni argumenty """
3 list_bodu.append(bod)
4

5 def pridej_bod_spatne(list_bodu , bod):
6 """ Nic neudela , zbytecna funkce!"""
7 list_bodu = list_bodu + [bod]
8

9 def pridej_bod_dobre(list_bodu , bod):
10 """ Vrati novy list bodu """
11 list_bodu = list_bodu + [bod]
12 return list_bodu
13

14 body = [(10 ,20), (5, -10) , (20, 30)]
15 pridej_bod(body , (0, 0))
16 pridej_bod_spatne(body , (24, 4))
17 pridej_bod_dobre(body , (1, 3))

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 218 / 230

Předávání proměnných hodnotou a referencí - vizualizace po
volání poslední funkce

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 219 / 230

Objektově orientované programování

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 220 / 230

Úvod do Tříd v Pythonu

Python podporuje Objektově Orientované Programování (OPP).
V Pythonu je všechno objekt a objekty jsou instancemi tříd.
Třídy jsou předlohou pro vytváření objektů s atributy a metodami.
Poskytují způsob modelování entit z reálného světa a zapouzdřování
dat a funkcionality.
Třídy jsou nástroji pro organizaci kódu, tvorbu opakovatelných
komponent a modelování komplexních systémů.

1 class PrvniTrida:
2 """ Trida PrvniTrida demonstruje vytvoreni prvni

tridy """
3 retezec = "Toto je ma prvni trida"
4

5 def print(self):
6 print(f"<<<{self.retezec}>>>")
7

8 # Vytvoreni objektu o a zavolani metody print
9 o = PrvniTrida ()

10 o.print()

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 221 / 230

Definice třídy

Definice třídy se může vyskytnout kdekoli, definici třídy je možno
upravovat.

1 class PrvniTrida:
2 """ Trida PrvniTrida demonstruje vytvoreni prvni

tridy """
3 pass
4

5

6 PrvniTrida.retezec = "Toto je ma prvni trida"
7

8 # Vytvoreni objektu o
9 o = PrvniTrida ()

10 print(o.retezec)

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 222 / 230

Atributy v třídách

Atributy v třídách jsou proměnné, které uchovávají data spojená s
instancemi třídy.
Mohou být definovány v rámci definice třídy a přistupuje se k nim
pomocí tečkové notace.
Máme dva typy atributů: instance atributy a class atributy.
Class atributy

Třídní atributy jsou sdílené mezi všemi instancemi třídy.
Jsou definovány mimo jakoukoliv metodu v rámci třídy a přistupuje se
k nim pomocí názvu třídy.

Instance atributy
Instance atributy jsou specifické pro každou instanci třídy.
Jsou definovány v rámci metody __init__ a přistupuje se k nim
pomocí self.

Přístup k atributům: Trida.class_attribut,
objekt.instance_atribut

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 223 / 230

Atributy v třídách - ukázka

1 class Bod:
2 sourSystem = ’SJTSK’ # sdilena vsemi instancemi
3 def __init__(self , name , x, y, sourSystem = "SJTSK"):
4 self.name = name
5 self.x = x
6 self.y = y
7 Bod.sourSystem = sourSystem # unikatni atributy

pro kazdou instanci
8 def __str__(self):
9 return f"Bod {self.name}[x,y][{Bod.sourSystem }] = [{

self.x},{self.y}]"
10

11 bod1 = Bod("U studanky", 10,20)
12 print(bod1) # Bod U studanky[x,y][SJTSK] = [10 ,20]
13 bod2 = Bod("B12344", 100 ,300)
14 print(bod2) # Bod B12344[x,y][SJTSK] = [100 ,300]
15 bod3 = Bod("B3433", 11100 ,24304 , "Neznamy")
16 print(bod3) # Bod B3433[x,y][Neznamy] = [11100 ,24304]
17 print(bod1) # Bod U studanky[x,y][Neznamy] = [10 ,20]
18 print(bod2) # Bod B12344[x,y][Neznamy] = [100 ,300]

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 224 / 230

Funkce v třídách

Funkce v třídách jsou metody, které definují chování spojené s
instancemi třídy.
Jsou definovány v rámci třídy k provedení konkrétních akcí nebo
operací.
Funkce v třídě jsou definovány uvnitř třídy pomocí klíčového slova def.
Musí mít self jako první parametr pro přístup k atributům a
metodám.

1 class Student:
2 def __init__(self , jmeno , vek):
3 self.jmeno = jmeno
4 self.vek = vek
5

6 def tisk(self):
7 print(f"Student jmeno {self.jmeno}, vek {self.vek}")
8

9 #st = Student ("Jan", 28)
10 #st.tisk()

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 225 / 230

Příklad Funkce v Třídě

1 class Student:
2 def __init__(self , jmeno , vek , predmety):
3 self.jmeno = jmeno
4 self.vek = vek
5 self.predmety = predmety
6

7 def pozdrav(self):
8 return f"Student {self.jmeno} ma zapsano {len(self.

predmety)} predmetu"
9

10 def pridejPredmet(self , predmet):
11 self.predmety.append(predmet)
12

13 st = Student("Jan", 28, ["Fyzika", "Databaze"])
14 print(st.pozdrav ())
15 st.pridejPredmet("Matematika")
16 print(st.pozdrav ())

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 226 / 230

Konstruktory v Pythonu

Konstruktory v třídách jsou speciální metody používané k inicializaci
objektů při jejich vytváření.
Metoda __init__ slouží jako konstruktor, metoda která se volá při
vytváření objektu.
Přijímá parametr self a další parametry k inicializaci atributů objektu
– umožňuje nastavit počáteční hodnoty pro vlastnosti objektu.
Není možné mít pro danou třídu definováno více konstruktorů.

1 class Student:
2 def __init__(self , jmeno , vek = 99):
3 self.jmeno = jmeno
4 self.vek = vek
5

6 def tisk(self):
7 print(f"Student jmeno {self.jmeno}, vek {self.vek}")
8 st = Student("Jan", 28)
9 st.tisk() # Student jmeno Jan , vek 28

10 st1 = Student("Karel")
11 st1.tisk() # Student jmeno Karel , vek 99

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 227 / 230

Vytváření Objektů z Tříd

Pro vytvoření(inicializaci) objektu z třídy použijte název třídy
následovaný závorkami. Tím se zavolá konstruktor třídy k inicializaci
objektu.
Jakmile je objekt vytvořen, můžete přistupovat k jeho atributům a
metodám pomocí tečkové notace.

1 class Trida:
2 pocet = 0
3 def __init__(self , cislo):
4 self.cislo = cislo
5 Trida.pocet += 1
6 def getPocet(self):
7 return Trida.pocet
8 def getCislo(self):
9 return self.cislo

10 t1 = Trida (-100)
11 print(f"p = {t1.getPocet ()}, c = {t1.getCislo ()}")
12 for i in range (0 ,100):
13 t2 = Trida(i*10)
14 print(f"p = {t2.getPocet ()}, c = {t2.getCislo ()}")

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 228 / 230

Privátní Proměnné v Python Třídách

Python podporuje skrytí dat pomocí použití privátních atributů a
metod s pomocí konvence podtržítka.
Privátní proměnné v Python třídách jsou proměnné, ke kterým by mělo
být přistupováno pouze uvnitř třídy.
Privátní proměnné pomáhají při zapouzdření a skrytí dat, což
umožňuje udržet vnitřnosti třídy skryté před vnějším zásahem.
Jsou označeny zdvojeným podtržítkem před názvem proměnné __.

1 class Tajne:
2 def __init__(self , sifra):
3 __sifra = sifra
4 def __vypis_sifru(self):
5 print(f"Sifra = {self.__sifra}")
6 tajne = Tajne("ABCDEFGH")
7 tajne.__vypis_sifru ()
8 # AttributeError: ’Tajne’ object has no attribute ’

__vypis_sifru ’
9 print(tajne.__sifra)

10 # AttributeError: ’Tajne’ object has no attribute ’
__vypis_sifru ’

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 229 / 230

Výchozí metody v třídách

Výchozí metody v Pythoních třídách jsou speciální metody, které
poskytují výchozí chování pro objekty.
Tyto metody jsou volány v konkrétních situacích a mohou být
upraveny v uživatelsky definovaných třídách.

Metoda __str__ - slouží k definování tisknutelného řetězcového
zobrazení objektu. Je volána při použití funkce str() na objekt nebo
když je předán funkci print().
Metoda __eq__ - slouží k definování chování rovnosti operátoru ==
pro objekty. Porovnává dva objekty a vrátí True, pokud jsou
považovány za rovné na základě vlastní implementace.

Jan Pytel (České vysoké učení technické) Úvod do programování v jazyce Python 11. května 2024 230 / 230

	Úvod do programování
	Problém
	Algoritmy
	Historie programovacích jazyků
	Python
	První aplikace v jazyce Python
	Jak Python interně pracuje
	První aplikace v jazyce Python

	Základní datové typy, reprezentace čísel v počítačí
	Počítače a binární čísla
	Proměnné v jazyce Python
	Celá čísla
	Desetinná čísla
	Module math
	Komplexní čísla
	Datový typ Bool
	Řetězce

	Odvozené datové typy
	Seznamy v Pythonu
	N-tice v Pythonu
	Slovníky v Pythonu

	Podmíněný příkaz, cykly
	Podmínky
	Cyklus for
	Cyklus while

	Funkce
	Základní kreslení obrázků s Turtle
	Rekurze
	Ukázka fraktálů - nekonečně členité útvary

	List comprehenions
	Simulace
	Funkce print() a formátování výstupu
	Moduly v Pythonu
	Jména a hodnoty
	Objektově orientované programování

